Properties

Label 2.2.29.1-175.5-f3
Base field \(\Q(\sqrt{29}) \)
Conductor norm \( 175 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{29}) \)

Generator \(a\), with minimal polynomial \( x^{2} - x - 7 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-7, -1, 1]))
 
gp: K = nfinit(Polrev([-7, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-7, -1, 1]);
 

Weierstrass equation

\({y}^2+{x}{y}={x}^{3}+{x}^{2}+\left(-37a+118\right){x}\)
sage: E = EllipticCurve([K([1,0]),K([1,0]),K([0,0]),K([118,-37]),K([0,0])])
 
gp: E = ellinit([Polrev([1,0]),Polrev([1,0]),Polrev([0,0]),Polrev([118,-37]),Polrev([0,0])], K);
 
magma: E := EllipticCurve([K![1,0],K![1,0],K![0,0],K![118,-37],K![0,0]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-3a+17)\) = \((-a-1)^{2}\cdot(a-1)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 175 \) = \(5^{2}\cdot7\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((6673a-11097)\) = \((-a-1)^{6}\cdot(a-1)^{5}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -262609375 \) = \(-5^{6}\cdot7^{5}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{173650213}{16807} a + \frac{58516320}{2401} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(-a + 3 : -6 a + 19 : 1\right)$
Height \(0.34996846369825454459575053942284962204\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(0 : 0 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.34996846369825454459575053942284962204 \)
Period: \( 9.0738830532472433484699589931710076093 \)
Tamagawa product: \( 10 \)  =  \(2\cdot5\)
Torsion order: \(2\)
Leading coefficient: \( 2.9484454289267301838108649498759065232 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-a-1)\) \(5\) \(2\) \(I_0^{*}\) Additive \(1\) \(2\) \(6\) \(0\)
\((a-1)\) \(7\) \(5\) \(I_{5}\) Split multiplicative \(-1\) \(1\) \(5\) \(5\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(5\) 5B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 5 and 10.
Its isogeny class 175.5-f consists of curves linked by isogenies of degrees dividing 10.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.