Properties

Label 2.2.29.1-13.1-a1
Base field \(\Q(\sqrt{29}) \)
Conductor norm \( 13 \)
CM no
Base change no
Q-curve no
Torsion order \( 1 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{29}) \)

Generator \(a\), with minimal polynomial \( x^{2} - x - 7 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-7, -1, 1]))
 
gp: K = nfinit(Polrev([-7, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-7, -1, 1]);
 

Weierstrass equation

\({y}^2+a{x}{y}+{y}={x}^{3}-{x}^{2}+\left(-4a-7\right){x}+4a+9\)
sage: E = EllipticCurve([K([0,1]),K([-1,0]),K([1,0]),K([-7,-4]),K([9,4])])
 
gp: E = ellinit([Polrev([0,1]),Polrev([-1,0]),Polrev([1,0]),Polrev([-7,-4]),Polrev([9,4])], K);
 
magma: E := EllipticCurve([K![0,1],K![-1,0],K![1,0],K![-7,-4],K![9,4]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a+4)\) = \((a+4)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 13 \) = \(13\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((36a+599)\) = \((a+4)^{5}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -371293 \) = \(-13^{5}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{14025781931}{371293} a + \frac{30870795619}{371293} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(-2 a + 8 : 5 a - 20 : 1\right)$
Height \(0.029002274691646952561286552258232397612\)
Torsion structure: trivial
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.029002274691646952561286552258232397612 \)
Period: \( 18.799115550203823344417406496436932820 \)
Tamagawa product: \( 5 \)
Torsion order: \(1\)
Leading coefficient: \( 1.0124427620575238939713735991419793217 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a+4)\) \(13\) \(5\) \(I_{5}\) Split multiplicative \(-1\) \(1\) \(5\) \(5\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(5\) 5B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 5.
Its isogeny class 13.1-a consists of curves linked by isogenies of degree 5.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.