Properties

Label 2.2.28.1-63.1-a2
Base field \(\Q(\sqrt{7}) \)
Conductor norm \( 63 \)
CM no
Base change no
Q-curve yes
Torsion order \( 8 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{7}) \)

Generator \(a\), with minimal polynomial \( x^{2} - 7 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-7, 0, 1]))
 
gp: K = nfinit(Polrev([-7, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-7, 0, 1]);
 

Weierstrass equation

\({y}^2+{x}{y}={x}^{3}+\left(115a-319\right){x}-1083a+3072\)
sage: E = EllipticCurve([K([1,0]),K([0,0]),K([0,0]),K([-319,115]),K([3072,-1083])])
 
gp: E = ellinit([Polrev([1,0]),Polrev([0,0]),Polrev([0,0]),Polrev([-319,115]),Polrev([3072,-1083])], K);
 
magma: E := EllipticCurve([K![1,0],K![0,0],K![0,0],K![-319,115],K![3072,-1083]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((3a)\) = \((-a+2)\cdot(-a-2)\cdot(a)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 63 \) = \(3\cdot3\cdot7\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-77193a+131544)\) = \((-a+2)^{16}\cdot(-a-2)^{4}\cdot(a)\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -24407490807 \) = \(-3^{16}\cdot3^{4}\cdot7\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{1153486390269896663}{301327047} a + \frac{435976874792639720}{43046721} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/8\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-5 a + 11 : 19 a - 34 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 6.5121634873223528687207849927837143612 \)
Tamagawa product: \( 64 \)  =  \(2^{4}\cdot2^{2}\cdot1\)
Torsion order: \(8\)
Leading coefficient: \( 1.2306832203178622476508457053643415893 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-a+2)\) \(3\) \(16\) \(I_{16}\) Split multiplicative \(-1\) \(1\) \(16\) \(16\)
\((-a-2)\) \(3\) \(4\) \(I_{4}\) Split multiplicative \(-1\) \(1\) \(4\) \(4\)
\((a)\) \(7\) \(1\) \(I_{1}\) Non-split multiplicative \(1\) \(1\) \(1\) \(1\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 4, 8 and 16.
Its isogeny class 63.1-a consists of curves linked by isogenies of degrees dividing 16.

Base change

This elliptic curve is a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.