Properties

Label 2.2.28.1-56.1-a4
Base field \(\Q(\sqrt{7}) \)
Conductor norm \( 56 \)
CM no
Base change yes
Q-curve yes
Torsion order \( 4 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{7}) \)

Generator \(a\), with minimal polynomial \( x^{2} - 7 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-7, 0, 1]))
 
gp: K = nfinit(Polrev([-7, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-7, 0, 1]);
 

Weierstrass equation

\({y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(a+1\right){x}^{2}+\left(-3586a-9489\right){x}+181961a+481423\)
sage: E = EllipticCurve([K([1,1]),K([1,1]),K([1,1]),K([-9489,-3586]),K([481423,181961])])
 
gp: E = ellinit([Polrev([1,1]),Polrev([1,1]),Polrev([1,1]),Polrev([-9489,-3586]),Polrev([481423,181961])], K);
 
magma: E := EllipticCurve([K![1,1],K![1,1],K![1,1],K![-9489,-3586],K![481423,181961]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Mordell-Weil group structure

\(\Z/{4}\Z\)

Mordell-Weil generators

$P$$\hat{h}(P)$Order
$\left(13 a + 35 : -47 a - 123 : 1\right)$$0$$4$

Invariants

Conductor: $\frak{N}$ = \((-6a+14)\) = \((a+3)^{3}\cdot(a)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: $N(\frak{N})$ = \( 56 \) = \(2^{3}\cdot7\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: $\Delta$ = $224$
Discriminant ideal: $\frak{D}_{\mathrm{min}} = (\Delta)$ = \((224)\) = \((a+3)^{10}\cdot(a)^{2}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: $N(\frak{D}_{\mathrm{min}}) = N(\Delta)$ = \( 50176 \) = \(2^{10}\cdot7^{2}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: $j$ = \( \frac{1443468546}{7} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: $\mathrm{End}(E)$ = \(\Z\)   
Geometric endomorphism ring: $\mathrm{End}(E_{\overline{\Q}})$ = \(\Z\)    (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{ST}(E)$ = $\mathrm{SU}(2)$

BSD invariants

Analytic rank: $r_{\mathrm{an}}$= \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: $r$ = \(0\)
Regulator: $\mathrm{Reg}(E/K)$ = \( 1 \)
Néron-Tate Regulator: $\mathrm{Reg}_{\mathrm{NT}}(E/K)$ = \( 1 \)
Global period: $\Omega(E/K)$ \( 24.474712123189155120415412150478832757 \)
Tamagawa product: $\prod_{\frak{p}}c_{\frak{p}}$= \( 4 \)  =  \(2\cdot2\)
Torsion order: $\#E(K)_{\mathrm{tor}}$= \(4\)
Special value: $L^{(r)}(E/K,1)/r!$ \( 1.1563214587117167280217014453453808082 \)
Analytic order of Ш: Ш${}_{\mathrm{an}}$= \( 1 \) (rounded)

BSD formula

$\displaystyle 1.156321459 \approx L(E/K,1) \overset{?}{=} \frac{ \# Ш(E/K) \cdot \Omega(E/K) \cdot \mathrm{Reg}_{\mathrm{NT}}(E/K) \cdot \prod_{\mathfrak{p}} c_{\mathfrak{p}} } { \#E(K)_{\mathrm{tor}}^2 \cdot \left|d_K\right|^{1/2} } \approx \frac{ 1 \cdot 24.474712 \cdot 1 \cdot 4 } { {4^2 \cdot 5.291503} } \approx 1.156321459$

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 

This elliptic curve is not semistable. There are 2 primes $\frak{p}$ of bad reduction.

$\mathfrak{p}$ $N(\mathfrak{p})$ Tamagawa number Kodaira symbol Reduction type Root number \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{N}\)) \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{D}_{\mathrm{min}}\)) \(\mathrm{ord}_{\mathfrak{p}}(\mathrm{den}(j))\)
\((a+3)\) \(2\) \(2\) \(III^{*}\) Additive \(1\) \(3\) \(10\) \(0\)
\((a)\) \(7\) \(2\) \(I_{2}\) Non-split multiplicative \(1\) \(1\) \(2\) \(2\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2 and 4.
Its isogeny class 56.1-a consists of curves linked by isogenies of degrees dividing 4.

Base change

This elliptic curve is a \(\Q\)-curve. It is the base change of the following 2 elliptic curves:

Base field Curve
\(\Q\) 56.a1
\(\Q\) 784.e1