Properties

Label 2.2.28.1-504.1-w4
Base field \(\Q(\sqrt{7}) \)
Conductor \((-18a+42)\)
Conductor norm \( 504 \)
CM no
Base change yes: 168.a3,2352.c3
Q-curve yes
Torsion order \( 8 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Base field \(\Q(\sqrt{7}) \)

Generator \(a\), with minimal polynomial \( x^{2} - 7 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-7, 0, 1]))
 
gp: K = nfinit(Pol(Vecrev([-7, 0, 1])));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-7, 0, 1]);
 

Weierstrass equation

\({y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+a{x}^{2}+\left(3029a-8009\right){x}-148859a+393848\)
sage: E = EllipticCurve([K([1,1]),K([0,1]),K([1,1]),K([-8009,3029]),K([393848,-148859])])
 
gp: E = ellinit([Pol(Vecrev([1,1])),Pol(Vecrev([0,1])),Pol(Vecrev([1,1])),Pol(Vecrev([-8009,3029])),Pol(Vecrev([393848,-148859]))], K);
 
magma: E := EllipticCurve([K![1,1],K![0,1],K![1,1],K![-8009,3029],K![393848,-148859]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-18a+42)\) = \((a+3)^{3}\cdot(-a+2)\cdot(-a-2)\cdot(a)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 504 \) = \(2^{3}\cdot3\cdot3\cdot7\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((142884)\) = \((a+3)^{4}\cdot(-a+2)^{6}\cdot(-a-2)^{6}\cdot(a)^{4}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 20415837456 \) = \(2^{4}\cdot3^{6}\cdot3^{6}\cdot7^{4}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{6940769488}{35721} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\times\Z/4\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generators: $\left(-\frac{27}{2} a + 34 : -\frac{43}{4} a + \frac{119}{4} : 1\right)$ $\left(-23 a + 59 : 123 a - 324 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 10.7788108976519 \)
Tamagawa product: \( 32 \)  =  \(2\cdot2\cdot2\cdot2^{2}\)
Torsion order: \(8\)
Leading coefficient: \( 1.01850189514928 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a+3)\) \(2\) \(2\) \(III\) Additive \(-1\) \(3\) \(4\) \(0\)
\((-a+2)\) \(3\) \(2\) \(I_{6}\) Non-split multiplicative \(1\) \(1\) \(6\) \(6\)
\((-a-2)\) \(3\) \(2\) \(I_{6}\) Non-split multiplicative \(1\) \(1\) \(6\) \(6\)
\((a)\) \(7\) \(4\) \(I_{4}\) Split multiplicative \(-1\) \(1\) \(4\) \(4\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2Cs

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2 and 4.
Its isogeny class 504.1-w consists of curves linked by isogenies of degrees dividing 8.

Base change

This curve is the base change of 168.a3, 2352.c3, defined over \(\Q\), so it is also a \(\Q\)-curve.