Elliptic curves in class 504.1-v over \(\Q(\sqrt{7}) \)
Isogeny class 504.1-v contains
6 curves linked by isogenies of
degrees dividing 8.
Curve label |
Weierstrass Coefficients |
504.1-v1
| \( \bigl[0\) , \( 1\) , \( 0\) , \( -7\) , \( -52\bigr] \)
|
504.1-v2
| \( \bigl[a + 1\) , \( a - 1\) , \( 0\) , \( 18683 a + 49429\) , \( 304346 a + 805231\bigr] \)
|
504.1-v3
| \( \bigl[a + 1\) , \( a - 1\) , \( a + 1\) , \( 4708 a - 12455\) , \( -38963 a + 103087\bigr] \)
|
504.1-v4
| \( \bigl[a + 1\) , \( a - 1\) , \( a + 1\) , \( 3028 a - 8010\) , \( 143877 a - 380662\bigr] \)
|
504.1-v5
| \( \bigl[a + 1\) , \( a - 1\) , \( a + 1\) , \( -18682 a + 49425\) , \( -254921 a + 674455\bigr] \)
|
504.1-v6
| \( \bigl[a + 1\) , \( a - 1\) , \( 0\) , \( -48387 a - 128021\) , \( -9504552 a - 25146681\bigr] \)
|
Rank: \( 1 \)
\(\left(\begin{array}{rrrrrr}
1 & 8 & 4 & 2 & 8 & 4 \\
8 & 1 & 2 & 4 & 4 & 8 \\
4 & 2 & 1 & 2 & 2 & 4 \\
2 & 4 & 2 & 1 & 4 & 2 \\
8 & 4 & 2 & 4 & 1 & 8 \\
4 & 8 & 4 & 2 & 8 & 1
\end{array}\right)\)