Properties

Label 2.2.28.1-432.1-m6
Base field \(\Q(\sqrt{7}) \)
Conductor norm \( 432 \)
CM no
Base change no
Q-curve yes
Torsion order \( 2 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{7}) \)

Generator \(a\), with minimal polynomial \( x^{2} - 7 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-7, 0, 1]))
 
gp: K = nfinit(Polrev([-7, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-7, 0, 1]);
 

Weierstrass equation

\({y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-5613a-14856\right){x}+372908a+986611\)
sage: E = EllipticCurve([K([1,1]),K([-1,-1]),K([1,1]),K([-14856,-5613]),K([986611,372908])])
 
gp: E = ellinit([Polrev([1,1]),Polrev([-1,-1]),Polrev([1,1]),Polrev([-14856,-5613]),Polrev([986611,372908])], K);
 
magma: E := EllipticCurve([K![1,1],K![-1,-1],K![1,1],K![-14856,-5613],K![986611,372908]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-12a+24)\) = \((a+3)^{4}\cdot(-a+2)^{2}\cdot(-a-2)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 432 \) = \(2^{4}\cdot3^{2}\cdot3\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-5253600a-630048)\) = \((a+3)^{11}\cdot(-a+2)^{22}\cdot(-a-2)\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -192805230237696 \) = \(-2^{11}\cdot3^{22}\cdot3\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{400787258265625}{43046721} a + \frac{1060093826933375}{43046721} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(\frac{37}{2} a + 51 : -\frac{141}{4} a - \frac{363}{4} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 1.5612964005868205524135983932243552535 \)
Tamagawa product: \( 16 \)  =  \(2^{2}\cdot2^{2}\cdot1\)
Torsion order: \(2\)
Leading coefficient: \( 1.1802291425180019149519920341257069452 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a+3)\) \(2\) \(4\) \(I_{3}^{*}\) Additive \(-1\) \(4\) \(11\) \(0\)
\((-a+2)\) \(3\) \(4\) \(I_{16}^{*}\) Additive \(-1\) \(2\) \(22\) \(16\)
\((-a-2)\) \(3\) \(1\) \(I_{1}\) Non-split multiplicative \(1\) \(1\) \(1\) \(1\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 4, 8 and 16.
Its isogeny class 432.1-m consists of curves linked by isogenies of degrees dividing 16.

Base change

This elliptic curve is a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.