Learn more

Refine search


Results (10 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
100.1-a1 100.1-a \(\Q(\sqrt{7}) \) \( 2^{2} \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $10.34365470$ 2.932150499 \( -\frac{20720464}{15625} \) \( \bigl[a + 1\) , \( a\) , \( 0\) , \( -434 a - 1147\) , \( 11367 a + 30074\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+a{x}^{2}+\left(-434a-1147\right){x}+11367a+30074$
100.1-a2 100.1-a \(\Q(\sqrt{7}) \) \( 2^{2} \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $10.34365470$ 2.932150499 \( \frac{21296}{25} \) \( \bigl[a + 1\) , \( a\) , \( 0\) , \( 46 a + 123\) , \( -173 a - 458\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+a{x}^{2}+\left(46a+123\right){x}-173a-458$
100.1-a3 100.1-a \(\Q(\sqrt{7}) \) \( 2^{2} \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $20.68730941$ 2.932150499 \( \frac{16384}{5} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( -1\) , \( 0\bigr] \) ${y}^2={x}^{3}-{x}^{2}-{x}$
100.1-a4 100.1-a \(\Q(\sqrt{7}) \) \( 2^{2} \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $20.68730941$ 2.932150499 \( \frac{488095744}{125} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( -41\) , \( 116\bigr] \) ${y}^2={x}^{3}-{x}^{2}-41{x}+116$
100.1-b1 100.1-b \(\Q(\sqrt{7}) \) \( 2^{2} \cdot 5^{2} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.117724536$ $16.70104037$ 2.229373069 \( \frac{8192}{5} \) \( \bigl[0\) , \( a\) , \( a + 1\) , \( 3\) , \( -2\bigr] \) ${y}^2+\left(a+1\right){y}={x}^{3}+a{x}^{2}+3{x}-2$
100.1-c1 100.1-c \(\Q(\sqrt{7}) \) \( 2^{2} \cdot 5^{2} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.117724536$ $16.70104037$ 2.229373069 \( \frac{8192}{5} \) \( \bigl[0\) , \( -a\) , \( a + 1\) , \( 3\) , \( -a - 2\bigr] \) ${y}^2+\left(a+1\right){y}={x}^{3}-a{x}^{2}+3{x}-a-2$
100.1-d1 100.1-d \(\Q(\sqrt{7}) \) \( 2^{2} \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.772687765$ 0.502509747 \( -\frac{20720464}{15625} \) \( \bigl[a + 1\) , \( a - 1\) , \( 0\) , \( -435 a - 1148\) , \( -12954 a - 34274\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-435a-1148\right){x}-12954a-34274$
100.1-d2 100.1-d \(\Q(\sqrt{7}) \) \( 2^{2} \cdot 5^{2} \) 0 $\Z/6\Z$ $\mathrm{SU}(2)$ $1$ $15.95418988$ 0.502509747 \( \frac{21296}{25} \) \( \bigl[a + 1\) , \( a - 1\) , \( 0\) , \( 45 a + 122\) , \( 336 a + 888\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(45a+122\right){x}+336a+888$
100.1-d3 100.1-d \(\Q(\sqrt{7}) \) \( 2^{2} \cdot 5^{2} \) 0 $\Z/6\Z$ $\mathrm{SU}(2)$ $1$ $31.90837977$ 0.502509747 \( \frac{16384}{5} \) \( \bigl[0\) , \( 1\) , \( 0\) , \( -1\) , \( 0\bigr] \) ${y}^2={x}^{3}+{x}^{2}-{x}$
100.1-d4 100.1-d \(\Q(\sqrt{7}) \) \( 2^{2} \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $3.545375530$ 0.502509747 \( \frac{488095744}{125} \) \( \bigl[0\) , \( 1\) , \( 0\) , \( -41\) , \( -116\bigr] \) ${y}^2={x}^{3}+{x}^{2}-41{x}-116$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.