Properties

Label 2.2.24.1-722.1-g2
Base field \(\Q(\sqrt{6}) \)
Conductor norm \( 722 \)
CM no
Base change yes
Q-curve yes
Torsion order \( 3 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{6}) \)

Generator \(a\), with minimal polynomial \( x^{2} - 6 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-6, 0, 1]))
 
gp: K = nfinit(Polrev([-6, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-6, 0, 1]);
 

Weierstrass equation

\({y}^2+\left(a+1\right){x}{y}={x}^{3}-a{x}^{2}+\left(-1711a-4189\right){x}+484528a+1186849\)
sage: E = EllipticCurve([K([1,1]),K([0,-1]),K([0,0]),K([-4189,-1711]),K([1186849,484528])])
 
gp: E = ellinit([Polrev([1,1]),Polrev([0,-1]),Polrev([0,0]),Polrev([-4189,-1711]),Polrev([1186849,484528])], K);
 
magma: E := EllipticCurve([K![1,1],K![0,-1],K![0,0],K![-4189,-1711],K![1186849,484528]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-19a+38)\) = \((-a+2)\cdot(a+5)\cdot(a-5)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 722 \) = \(2\cdot19\cdot19\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-2550136832)\) = \((-a+2)^{54}\cdot(a+5)\cdot(a-5)\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 6503197861922996224 \) = \(2^{54}\cdot19\cdot19\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{69173457625}{2550136832} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(-26 a - \frac{190}{3} : -\frac{1766}{9} a - \frac{1447}{3} : 1\right)$
Height \(1.6984050693746808917819760718942840081\)
Torsion structure: \(\Z/3\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(\frac{2}{3} a + \frac{2}{3} : -\frac{2822}{9} a - \frac{2311}{3} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 1.6984050693746808917819760718942840081 \)
Period: \( 1.4463135242216651559100740810240158370 \)
Tamagawa product: \( 54 \)  =  \(( 2 \cdot 3^{3} )\cdot1\cdot1\)
Torsion order: \(3\)
Leading coefficient: \( 6.0169908333288472661435336551301982303 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-a+2)\) \(2\) \(54\) \(I_{54}\) Split multiplicative \(-1\) \(1\) \(54\) \(54\)
\((a+5)\) \(19\) \(1\) \(I_{1}\) Split multiplicative \(-1\) \(1\) \(1\) \(1\)
\((a-5)\) \(19\) \(1\) \(I_{1}\) Split multiplicative \(-1\) \(1\) \(1\) \(1\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(3\) 3B.1.1

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 3 and 9.
Its isogeny class 722.1-g consists of curves linked by isogenies of degrees dividing 9.

Base change

This elliptic curve is a \(\Q\)-curve. It is the base change of the following 2 elliptic curves:

Base field Curve
\(\Q\) 342.e1
\(\Q\) 1216.m1