Label |
Class |
Class size |
Class degree |
Base field |
Field degree |
Field signature |
Conductor |
Conductor norm |
Discriminant norm |
Root analytic conductor |
Bad primes |
Rank |
Torsion |
CM |
CM |
Sato-Tate |
$\Q$-curve |
Base change |
Semistable |
Potentially good |
Nonmax $\ell$ |
mod-$\ell$ images |
$Ш_{\textrm{an}}$ |
Tamagawa |
Regulator |
Period |
Leading coeff |
j-invariant |
Weierstrass coefficients |
Weierstrass equation |
600.1-a1 |
600.1-a |
$6$ |
$8$ |
\(\Q(\sqrt{6}) \) |
$2$ |
$[2, 0]$ |
600.1 |
\( 2^{3} \cdot 3 \cdot 5^{2} \) |
\( - 2^{11} \cdot 3 \cdot 5^{10} \) |
$2.16662$ |
$(-a+2), (a+3), (-a-1), (-a+1)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$1$ |
\( 2^{2} \) |
$1.443554612$ |
$6.199205081$ |
3.653369488 |
\( -\frac{1248072326587691}{1171875} a + \frac{1019046787164648}{390625} \) |
\( \bigl[a\) , \( a + 1\) , \( 0\) , \( -90 a - 226\) , \( 39852 a + 97622\bigr] \) |
${y}^2+a{x}{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(-90a-226\right){x}+39852a+97622$ |
600.1-a2 |
600.1-a |
$6$ |
$8$ |
\(\Q(\sqrt{6}) \) |
$2$ |
$[2, 0]$ |
600.1 |
\( 2^{3} \cdot 3 \cdot 5^{2} \) |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \) |
$2.16662$ |
$(-a+2), (a+3), (-a-1), (-a+1)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2B |
$1$ |
\( 2^{2} \) |
$0.721777306$ |
$12.39841016$ |
3.653369488 |
\( \frac{21296}{15} \) |
\( \bigl[a\) , \( -a + 1\) , \( 0\) , \( -20 a + 49\) , \( 0\bigr] \) |
${y}^2+a{x}{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-20a+49\right){x}$ |
600.1-a3 |
600.1-a |
$6$ |
$8$ |
\(\Q(\sqrt{6}) \) |
$2$ |
$[2, 0]$ |
600.1 |
\( 2^{3} \cdot 3 \cdot 5^{2} \) |
\( 2^{8} \cdot 3^{4} \cdot 5^{4} \) |
$2.16662$ |
$(-a+2), (a+3), (-a-1), (-a+1)$ |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2Cs |
$1$ |
\( 2^{5} \) |
$0.360888653$ |
$12.39841016$ |
3.653369488 |
\( \frac{470596}{225} \) |
\( \bigl[a\) , \( -a + 1\) , \( 0\) , \( 80 a - 196\) , \( 396 a - 970\bigr] \) |
${y}^2+a{x}{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(80a-196\right){x}+396a-970$ |
600.1-a4 |
600.1-a |
$6$ |
$8$ |
\(\Q(\sqrt{6}) \) |
$2$ |
$[2, 0]$ |
600.1 |
\( 2^{3} \cdot 3 \cdot 5^{2} \) |
\( 2^{10} \cdot 3^{2} \cdot 5^{8} \) |
$2.16662$ |
$(-a+2), (a+3), (-a-1), (-a+1)$ |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2Cs |
$1$ |
\( 2^{4} \) |
$0.721777306$ |
$12.39841016$ |
3.653369488 |
\( \frac{136835858}{1875} \) |
\( \bigl[a\) , \( -a + 1\) , \( 0\) , \( 680 a - 1666\) , \( -13860 a + 33950\bigr] \) |
${y}^2+a{x}{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(680a-1666\right){x}-13860a+33950$ |
600.1-a5 |
600.1-a |
$6$ |
$8$ |
\(\Q(\sqrt{6}) \) |
$2$ |
$[2, 0]$ |
600.1 |
\( 2^{3} \cdot 3 \cdot 5^{2} \) |
\( 2^{10} \cdot 3^{8} \cdot 5^{2} \) |
$2.16662$ |
$(-a+2), (a+3), (-a-1), (-a+1)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2B |
$1$ |
\( 2^{4} \) |
$0.721777306$ |
$3.099602540$ |
3.653369488 |
\( \frac{546718898}{405} \) |
\( \bigl[a\) , \( a + 1\) , \( 0\) , \( -1080 a - 2646\) , \( -32076 a - 78570\bigr] \) |
${y}^2+a{x}{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(-1080a-2646\right){x}-32076a-78570$ |
600.1-a6 |
600.1-a |
$6$ |
$8$ |
\(\Q(\sqrt{6}) \) |
$2$ |
$[2, 0]$ |
600.1 |
\( 2^{3} \cdot 3 \cdot 5^{2} \) |
\( - 2^{11} \cdot 3 \cdot 5^{10} \) |
$2.16662$ |
$(-a+2), (a+3), (-a-1), (-a+1)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$1$ |
\( 2^{2} \) |
$1.443554612$ |
$6.199205081$ |
3.653369488 |
\( \frac{1248072326587691}{1171875} a + \frac{1019046787164648}{390625} \) |
\( \bigl[a\) , \( -a + 1\) , \( 0\) , \( 90 a - 226\) , \( -39852 a + 97622\bigr] \) |
${y}^2+a{x}{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(90a-226\right){x}-39852a+97622$ |
600.1-b1 |
600.1-b |
$4$ |
$4$ |
\(\Q(\sqrt{6}) \) |
$2$ |
$[2, 0]$ |
600.1 |
\( 2^{3} \cdot 3 \cdot 5^{2} \) |
\( - 2^{11} \cdot 3^{12} \cdot 5^{6} \) |
$2.16662$ |
$(-a+2), (a+3), (-a-1), (-a+1)$ |
$0$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{4} \) |
$1$ |
$2.000872309$ |
1.633705399 |
\( -\frac{4273743067}{455625} a + \frac{11101875022}{455625} \) |
\( \bigl[a\) , \( a - 1\) , \( a\) , \( 149 a + 357\) , \( -606 a - 1488\bigr] \) |
${y}^2+a{x}{y}+a{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(149a+357\right){x}-606a-1488$ |
600.1-b2 |
600.1-b |
$4$ |
$4$ |
\(\Q(\sqrt{6}) \) |
$2$ |
$[2, 0]$ |
600.1 |
\( 2^{3} \cdot 3 \cdot 5^{2} \) |
\( 2^{10} \cdot 3^{6} \cdot 5^{6} \) |
$2.16662$ |
$(-a+2), (a+3), (-a-1), (-a+1)$ |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2Cs |
$1$ |
\( 2^{4} \) |
$1$ |
$8.003489239$ |
1.633705399 |
\( -\frac{1019116}{16875} a + \frac{38497694}{16875} \) |
\( \bigl[a\) , \( a - 1\) , \( a\) , \( -41 a - 103\) , \( -140 a - 344\bigr] \) |
${y}^2+a{x}{y}+a{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-41a-103\right){x}-140a-344$ |
600.1-b3 |
600.1-b |
$4$ |
$4$ |
\(\Q(\sqrt{6}) \) |
$2$ |
$[2, 0]$ |
600.1 |
\( 2^{3} \cdot 3 \cdot 5^{2} \) |
\( - 2^{8} \cdot 3^{3} \cdot 5^{3} \) |
$2.16662$ |
$(-a+2), (a+3), (-a-1), (-a+1)$ |
$0$ |
$\Z/4\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{3} \) |
$1$ |
$16.00697847$ |
1.633705399 |
\( \frac{3082096}{225} a + \frac{2607052}{75} \) |
\( \bigl[a\) , \( a - 1\) , \( a\) , \( -21 a - 53\) , \( 62 a + 150\bigr] \) |
${y}^2+a{x}{y}+a{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-21a-53\right){x}+62a+150$ |
600.1-b4 |
600.1-b |
$4$ |
$4$ |
\(\Q(\sqrt{6}) \) |
$2$ |
$[2, 0]$ |
600.1 |
\( 2^{3} \cdot 3 \cdot 5^{2} \) |
\( 2^{11} \cdot 3^{3} \cdot 5^{9} \) |
$2.16662$ |
$(-a+2), (a+3), (-a-1), (-a+1)$ |
$0$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$4$ |
\( 2 \) |
$1$ |
$4.001744619$ |
1.633705399 |
\( -\frac{667986634693}{3515625} a + \frac{2267167244054}{1171875} \) |
\( \bigl[a\) , \( a - 1\) , \( a\) , \( -551 a - 1363\) , \( -11642 a - 28496\bigr] \) |
${y}^2+a{x}{y}+a{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-551a-1363\right){x}-11642a-28496$ |
600.1-c1 |
600.1-c |
$8$ |
$16$ |
\(\Q(\sqrt{6}) \) |
$2$ |
$[2, 0]$ |
600.1 |
\( 2^{3} \cdot 3 \cdot 5^{2} \) |
\( - 2^{11} \cdot 3^{4} \cdot 5^{18} \) |
$2.16662$ |
$(-a+2), (a+3), (-a-1), (-a+1)$ |
$0$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{3} \) |
$1$ |
$2.016182676$ |
0.823103130 |
\( -\frac{19599592200920402803}{1373291015625} a + \frac{48008669816042687402}{1373291015625} \) |
\( \bigl[a\) , \( -a - 1\) , \( a\) , \( -2127 a - 5301\) , \( 243522 a + 596748\bigr] \) |
${y}^2+a{x}{y}+a{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-2127a-5301\right){x}+243522a+596748$ |
600.1-c2 |
600.1-c |
$8$ |
$16$ |
\(\Q(\sqrt{6}) \) |
$2$ |
$[2, 0]$ |
600.1 |
\( 2^{3} \cdot 3 \cdot 5^{2} \) |
\( - 2^{8} \cdot 3 \cdot 5^{3} \) |
$2.16662$ |
$(-a+2), (a+3), (-a-1), (-a+1)$ |
$0$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$4$ |
\( 2^{2} \) |
$1$ |
$1.008091338$ |
0.823103130 |
\( -\frac{23560288985094256}{75} a + \frac{19236895401998092}{25} \) |
\( \bigl[a\) , \( -a - 1\) , \( a\) , \( -57 a - 161\) , \( -3628 a - 8946\bigr] \) |
${y}^2+a{x}{y}+a{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-57a-161\right){x}-3628a-8946$ |
600.1-c3 |
600.1-c |
$8$ |
$16$ |
\(\Q(\sqrt{6}) \) |
$2$ |
$[2, 0]$ |
600.1 |
\( 2^{3} \cdot 3 \cdot 5^{2} \) |
\( 2^{10} \cdot 3^{2} \cdot 5^{18} \) |
$2.16662$ |
$(-a+2), (a+3), (-a-1), (-a+1)$ |
$0$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{4} \) |
$1$ |
$1.008091338$ |
0.823103130 |
\( \frac{127702652341796}{457763671875} a + \frac{445172276244514}{457763671875} \) |
\( \bigl[a\) , \( -a - 1\) , \( a\) , \( 1003 a + 2459\) , \( 5004 a + 12256\bigr] \) |
${y}^2+a{x}{y}+a{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(1003a+2459\right){x}+5004a+12256$ |
600.1-c4 |
600.1-c |
$8$ |
$16$ |
\(\Q(\sqrt{6}) \) |
$2$ |
$[2, 0]$ |
600.1 |
\( 2^{3} \cdot 3 \cdot 5^{2} \) |
\( 2^{8} \cdot 3^{4} \cdot 5^{12} \) |
$2.16662$ |
$(-a+2), (a+3), (-a-1), (-a+1)$ |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2Cs |
$1$ |
\( 2^{4} \) |
$1$ |
$4.032365352$ |
0.823103130 |
\( -\frac{3757835312}{3515625} a + \frac{15542863492}{3515625} \) |
\( \bigl[a\) , \( -a - 1\) , \( a\) , \( -257 a - 631\) , \( 882 a + 2158\bigr] \) |
${y}^2+a{x}{y}+a{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-257a-631\right){x}+882a+2158$ |
600.1-c5 |
600.1-c |
$8$ |
$16$ |
\(\Q(\sqrt{6}) \) |
$2$ |
$[2, 0]$ |
600.1 |
\( 2^{3} \cdot 3 \cdot 5^{2} \) |
\( 2^{4} \cdot 3^{2} \cdot 5^{6} \) |
$2.16662$ |
$(-a+2), (a+3), (-a-1), (-a+1)$ |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2Cs |
$1$ |
\( 2^{4} \) |
$1$ |
$4.032365352$ |
0.823103130 |
\( -\frac{14957995904}{1875} a + \frac{36917201264}{1875} \) |
\( \bigl[a\) , \( -a - 1\) , \( a\) , \( -157 a - 386\) , \( -1563 a - 3831\bigr] \) |
${y}^2+a{x}{y}+a{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-157a-386\right){x}-1563a-3831$ |
600.1-c6 |
600.1-c |
$8$ |
$16$ |
\(\Q(\sqrt{6}) \) |
$2$ |
$[2, 0]$ |
600.1 |
\( 2^{3} \cdot 3 \cdot 5^{2} \) |
\( 2^{10} \cdot 3^{8} \cdot 5^{12} \) |
$2.16662$ |
$(-a+2), (a+3), (-a-1), (-a+1)$ |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2Cs |
$1$ |
\( 2^{4} \) |
$1$ |
$4.032365352$ |
0.823103130 |
\( \frac{3685775618228}{31640625} a + \frac{9317132811898}{31640625} \) |
\( \bigl[a\) , \( -a - 1\) , \( a\) , \( -3117 a - 7641\) , \( 150120 a + 367716\bigr] \) |
${y}^2+a{x}{y}+a{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-3117a-7641\right){x}+150120a+367716$ |
600.1-c7 |
600.1-c |
$8$ |
$16$ |
\(\Q(\sqrt{6}) \) |
$2$ |
$[2, 0]$ |
600.1 |
\( 2^{3} \cdot 3 \cdot 5^{2} \) |
\( - 2^{8} \cdot 3 \cdot 5^{3} \) |
$2.16662$ |
$(-a+2), (a+3), (-a-1), (-a+1)$ |
$0$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{3} \) |
$1$ |
$2.016182676$ |
0.823103130 |
\( \frac{332552544256}{75} a + \frac{271527876608}{25} \) |
\( \bigl[0\) , \( -1\) , \( 0\) , \( -31\) , \( 2 a - 62\bigr] \) |
${y}^2={x}^{3}-{x}^{2}-31{x}+2a-62$ |
600.1-c8 |
600.1-c |
$8$ |
$16$ |
\(\Q(\sqrt{6}) \) |
$2$ |
$[2, 0]$ |
600.1 |
\( 2^{3} \cdot 3 \cdot 5^{2} \) |
\( - 2^{11} \cdot 3^{16} \cdot 5^{6} \) |
$2.16662$ |
$(-a+2), (a+3), (-a-1), (-a+1)$ |
$0$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{3} \) |
$1$ |
$2.016182676$ |
0.823103130 |
\( \frac{280668078691379467}{4100625} a + \frac{687493580633880022}{4100625} \) |
\( \bigl[a\) , \( a - 1\) , \( a\) , \( -15303 a + 37459\) , \( -4665940 a + 11429196\bigr] \) |
${y}^2+a{x}{y}+a{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-15303a+37459\right){x}-4665940a+11429196$ |
600.1-d1 |
600.1-d |
$6$ |
$8$ |
\(\Q(\sqrt{6}) \) |
$2$ |
$[2, 0]$ |
600.1 |
\( 2^{3} \cdot 3 \cdot 5^{2} \) |
\( - 2^{10} \cdot 3^{8} \cdot 5^{3} \) |
$2.16662$ |
$(-a+2), (a+3), (-a-1), (-a+1)$ |
$0$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$4$ |
\( 2^{3} \) |
$1$ |
$1.076330995$ |
1.757641155 |
\( -\frac{20381618209534}{675} a + \frac{149773694236798}{2025} \) |
\( \bigl[a\) , \( a - 1\) , \( a\) , \( 77 a + 185\) , \( -127866 a - 313208\bigr] \) |
${y}^2+a{x}{y}+a{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(77a+185\right){x}-127866a-313208$ |
600.1-d2 |
600.1-d |
$6$ |
$8$ |
\(\Q(\sqrt{6}) \) |
$2$ |
$[2, 0]$ |
600.1 |
\( 2^{3} \cdot 3 \cdot 5^{2} \) |
\( - 2^{8} \cdot 3 \cdot 5^{9} \) |
$2.16662$ |
$(-a+2), (a+3), (-a-1), (-a+1)$ |
$0$ |
$\Z/4\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{4} \) |
$1$ |
$8.610647963$ |
1.757641155 |
\( -\frac{51371516824}{1171875} a + \frac{42420366228}{390625} \) |
\( \bigl[a\) , \( -1\) , \( a\) , \( 210 a - 517\) , \( -2546 a + 6235\bigr] \) |
${y}^2+a{x}{y}+a{y}={x}^{3}-{x}^{2}+\left(210a-517\right){x}-2546a+6235$ |
600.1-d3 |
600.1-d |
$6$ |
$8$ |
\(\Q(\sqrt{6}) \) |
$2$ |
$[2, 0]$ |
600.1 |
\( 2^{3} \cdot 3 \cdot 5^{2} \) |
\( 2^{4} \cdot 3^{2} \cdot 5^{6} \) |
$2.16662$ |
$(-a+2), (a+3), (-a-1), (-a+1)$ |
$0$ |
$\Z/2\Z\oplus\Z/4\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2Cs |
$1$ |
\( 2^{5} \) |
$1$ |
$17.22129592$ |
1.757641155 |
\( \frac{85312}{625} a + \frac{3891824}{1875} \) |
\( \bigl[a\) , \( -1\) , \( a\) , \( 20 a - 52\) , \( 10 a - 26\bigr] \) |
${y}^2+a{x}{y}+a{y}={x}^{3}-{x}^{2}+\left(20a-52\right){x}+10a-26$ |
600.1-d4 |
600.1-d |
$6$ |
$8$ |
\(\Q(\sqrt{6}) \) |
$2$ |
$[2, 0]$ |
600.1 |
\( 2^{3} \cdot 3 \cdot 5^{2} \) |
\( 2^{8} \cdot 3^{4} \cdot 5^{6} \) |
$2.16662$ |
$(-a+2), (a+3), (-a-1), (-a+1)$ |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2Cs |
$1$ |
\( 2^{5} \) |
$1$ |
$4.305323981$ |
1.757641155 |
\( -\frac{129002216}{1875} a + \frac{1219648732}{5625} \) |
\( \bigl[a\) , \( -1\) , \( a\) , \( 230 a - 567\) , \( 3006 a - 7365\bigr] \) |
${y}^2+a{x}{y}+a{y}={x}^{3}-{x}^{2}+\left(230a-567\right){x}+3006a-7365$ |
600.1-d5 |
600.1-d |
$6$ |
$8$ |
\(\Q(\sqrt{6}) \) |
$2$ |
$[2, 0]$ |
600.1 |
\( 2^{3} \cdot 3 \cdot 5^{2} \) |
\( - 2^{8} \cdot 3 \cdot 5^{3} \) |
$2.16662$ |
$(-a+2), (a+3), (-a-1), (-a+1)$ |
$0$ |
$\Z/4\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{3} \) |
$1$ |
$17.22129592$ |
1.757641155 |
\( \frac{35713024}{75} a + \frac{29202432}{25} \) |
\( \bigl[0\) , \( -a - 1\) , \( 0\) , \( -6 a - 13\) , \( 21 a + 52\bigr] \) |
${y}^2={x}^{3}+\left(-a-1\right){x}^{2}+\left(-6a-13\right){x}+21a+52$ |
600.1-d6 |
600.1-d |
$6$ |
$8$ |
\(\Q(\sqrt{6}) \) |
$2$ |
$[2, 0]$ |
600.1 |
\( 2^{3} \cdot 3 \cdot 5^{2} \) |
\( - 2^{10} \cdot 3^{2} \cdot 5^{9} \) |
$2.16662$ |
$(-a+2), (a+3), (-a-1), (-a+1)$ |
$0$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{5} \) |
$1$ |
$1.076330995$ |
1.757641155 |
\( \frac{180287159002538}{390625} a + \frac{1324834474677574}{1171875} \) |
\( \bigl[a\) , \( -1\) , \( a\) , \( 140 a - 357\) , \( 5280 a - 12951\bigr] \) |
${y}^2+a{x}{y}+a{y}={x}^{3}-{x}^{2}+\left(140a-357\right){x}+5280a-12951$ |
600.1-e1 |
600.1-e |
$4$ |
$4$ |
\(\Q(\sqrt{6}) \) |
$2$ |
$[2, 0]$ |
600.1 |
\( 2^{3} \cdot 3 \cdot 5^{2} \) |
\( - 2^{11} \cdot 3^{12} \cdot 5^{6} \) |
$2.16662$ |
$(-a+2), (a+3), (-a-1), (-a+1)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{3} \) |
$0.953585644$ |
$3.868009542$ |
3.011629979 |
\( -\frac{4273743067}{455625} a + \frac{11101875022}{455625} \) |
\( \bigl[a\) , \( -a - 1\) , \( 0\) , \( 126 a - 300\) , \( -1044 a + 2556\bigr] \) |
${y}^2+a{x}{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(126a-300\right){x}-1044a+2556$ |
600.1-e2 |
600.1-e |
$4$ |
$4$ |
\(\Q(\sqrt{6}) \) |
$2$ |
$[2, 0]$ |
600.1 |
\( 2^{3} \cdot 3 \cdot 5^{2} \) |
\( 2^{10} \cdot 3^{6} \cdot 5^{6} \) |
$2.16662$ |
$(-a+2), (a+3), (-a-1), (-a+1)$ |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2Cs |
$1$ |
\( 2^{5} \) |
$0.476792822$ |
$7.736019084$ |
3.011629979 |
\( -\frac{1019116}{16875} a + \frac{38497694}{16875} \) |
\( \bigl[a\) , \( -a - 1\) , \( 0\) , \( 16 a - 40\) , \( 48 a - 116\bigr] \) |
${y}^2+a{x}{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(16a-40\right){x}+48a-116$ |
600.1-e3 |
600.1-e |
$4$ |
$4$ |
\(\Q(\sqrt{6}) \) |
$2$ |
$[2, 0]$ |
600.1 |
\( 2^{3} \cdot 3 \cdot 5^{2} \) |
\( - 2^{8} \cdot 3^{3} \cdot 5^{3} \) |
$2.16662$ |
$(-a+2), (a+3), (-a-1), (-a+1)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{2} \) |
$0.953585644$ |
$7.736019084$ |
3.011629979 |
\( \frac{3082096}{225} a + \frac{2607052}{75} \) |
\( \bigl[a\) , \( -a - 1\) , \( 0\) , \( -4 a + 10\) , \( 0\bigr] \) |
${y}^2+a{x}{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-4a+10\right){x}$ |
600.1-e4 |
600.1-e |
$4$ |
$4$ |
\(\Q(\sqrt{6}) \) |
$2$ |
$[2, 0]$ |
600.1 |
\( 2^{3} \cdot 3 \cdot 5^{2} \) |
\( 2^{11} \cdot 3^{3} \cdot 5^{9} \) |
$2.16662$ |
$(-a+2), (a+3), (-a-1), (-a+1)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{3} \) |
$0.953585644$ |
$3.868009542$ |
3.011629979 |
\( -\frac{667986634693}{3515625} a + \frac{2267167244054}{1171875} \) |
\( \bigl[a\) , \( -a - 1\) , \( 0\) , \( 226 a - 580\) , \( 3252 a - 7892\bigr] \) |
${y}^2+a{x}{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(226a-580\right){x}+3252a-7892$ |
600.1-f1 |
600.1-f |
$6$ |
$8$ |
\(\Q(\sqrt{6}) \) |
$2$ |
$[2, 0]$ |
600.1 |
\( 2^{3} \cdot 3 \cdot 5^{2} \) |
\( - 2^{10} \cdot 3^{8} \cdot 5^{3} \) |
$2.16662$ |
$(-a+2), (a+3), (-a-1), (-a+1)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{3} \) |
$0.409729395$ |
$7.551861354$ |
2.526419712 |
\( -\frac{20381618209534}{675} a + \frac{149773694236798}{2025} \) |
\( \bigl[a\) , \( -a - 1\) , \( 0\) , \( 38 a - 88\) , \( -28 a + 712\bigr] \) |
${y}^2+a{x}{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(38a-88\right){x}-28a+712$ |
600.1-f2 |
600.1-f |
$6$ |
$8$ |
\(\Q(\sqrt{6}) \) |
$2$ |
$[2, 0]$ |
600.1 |
\( 2^{3} \cdot 3 \cdot 5^{2} \) |
\( - 2^{8} \cdot 3 \cdot 5^{9} \) |
$2.16662$ |
$(-a+2), (a+3), (-a-1), (-a+1)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{3} \) |
$0.819458790$ |
$3.775930677$ |
2.526419712 |
\( -\frac{51371516824}{1171875} a + \frac{42420366228}{390625} \) |
\( \bigl[a\) , \( -a - 1\) , \( 0\) , \( 8 a + 12\) , \( -8 a - 42\bigr] \) |
${y}^2+a{x}{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(8a+12\right){x}-8a-42$ |
600.1-f3 |
600.1-f |
$6$ |
$8$ |
\(\Q(\sqrt{6}) \) |
$2$ |
$[2, 0]$ |
600.1 |
\( 2^{3} \cdot 3 \cdot 5^{2} \) |
\( 2^{4} \cdot 3^{2} \cdot 5^{6} \) |
$2.16662$ |
$(-a+2), (a+3), (-a-1), (-a+1)$ |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2Cs |
$1$ |
\( 2^{4} \) |
$0.409729395$ |
$15.10372270$ |
2.526419712 |
\( \frac{85312}{625} a + \frac{3891824}{1875} \) |
\( \bigl[a\) , \( -a - 1\) , \( 0\) , \( -2 a - 3\) , \( 0\bigr] \) |
${y}^2+a{x}{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-2a-3\right){x}$ |
600.1-f4 |
600.1-f |
$6$ |
$8$ |
\(\Q(\sqrt{6}) \) |
$2$ |
$[2, 0]$ |
600.1 |
\( 2^{3} \cdot 3 \cdot 5^{2} \) |
\( 2^{8} \cdot 3^{4} \cdot 5^{6} \) |
$2.16662$ |
$(-a+2), (a+3), (-a-1), (-a+1)$ |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2Cs |
$1$ |
\( 2^{5} \) |
$0.204864697$ |
$15.10372270$ |
2.526419712 |
\( -\frac{129002216}{1875} a + \frac{1219648732}{5625} \) |
\( \bigl[a\) , \( -a - 1\) , \( 0\) , \( -12 a - 38\) , \( 52 a + 132\bigr] \) |
${y}^2+a{x}{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-12a-38\right){x}+52a+132$ |
600.1-f5 |
600.1-f |
$6$ |
$8$ |
\(\Q(\sqrt{6}) \) |
$2$ |
$[2, 0]$ |
600.1 |
\( 2^{3} \cdot 3 \cdot 5^{2} \) |
\( - 2^{8} \cdot 3 \cdot 5^{3} \) |
$2.16662$ |
$(-a+2), (a+3), (-a-1), (-a+1)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{2} \) |
$0.819458790$ |
$7.551861354$ |
2.526419712 |
\( \frac{35713024}{75} a + \frac{29202432}{25} \) |
\( \bigl[0\) , \( -1\) , \( 0\) , \( -20 a + 49\) , \( 0\bigr] \) |
${y}^2={x}^{3}-{x}^{2}+\left(-20a+49\right){x}$ |
600.1-f6 |
600.1-f |
$6$ |
$8$ |
\(\Q(\sqrt{6}) \) |
$2$ |
$[2, 0]$ |
600.1 |
\( 2^{3} \cdot 3 \cdot 5^{2} \) |
\( - 2^{10} \cdot 3^{2} \cdot 5^{9} \) |
$2.16662$ |
$(-a+2), (a+3), (-a-1), (-a+1)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{3} \) |
$0.409729395$ |
$7.551861354$ |
2.526419712 |
\( \frac{180287159002538}{390625} a + \frac{1324834474677574}{1171875} \) |
\( \bigl[a\) , \( -a - 1\) , \( 0\) , \( -222 a - 548\) , \( 2980 a + 7320\bigr] \) |
${y}^2+a{x}{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-222a-548\right){x}+2980a+7320$ |
600.1-g1 |
600.1-g |
$8$ |
$16$ |
\(\Q(\sqrt{6}) \) |
$2$ |
$[2, 0]$ |
600.1 |
\( 2^{3} \cdot 3 \cdot 5^{2} \) |
\( - 2^{11} \cdot 3^{4} \cdot 5^{18} \) |
$2.16662$ |
$(-a+2), (a+3), (-a-1), (-a+1)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{6} \) |
$1.534852000$ |
$0.332093580$ |
3.329441145 |
\( -\frac{19599592200920402803}{1373291015625} a + \frac{48008669816042687402}{1373291015625} \) |
\( \bigl[a\) , \( -1\) , \( 0\) , \( 1795 a - 4504\) , \( 66026 a - 162971\bigr] \) |
${y}^2+a{x}{y}={x}^{3}-{x}^{2}+\left(1795a-4504\right){x}+66026a-162971$ |
600.1-g2 |
600.1-g |
$8$ |
$16$ |
\(\Q(\sqrt{6}) \) |
$2$ |
$[2, 0]$ |
600.1 |
\( 2^{3} \cdot 3 \cdot 5^{2} \) |
\( - 2^{8} \cdot 3 \cdot 5^{3} \) |
$2.16662$ |
$(-a+2), (a+3), (-a-1), (-a+1)$ |
$1$ |
$\Z/4\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{3} \) |
$1.534852000$ |
$10.62699456$ |
3.329441145 |
\( -\frac{23560288985094256}{75} a + \frac{19236895401998092}{25} \) |
\( \bigl[a\) , \( -1\) , \( 0\) , \( 425 a - 1044\) , \( -7406 a + 18159\bigr] \) |
${y}^2+a{x}{y}={x}^{3}-{x}^{2}+\left(425a-1044\right){x}-7406a+18159$ |
600.1-g3 |
600.1-g |
$8$ |
$16$ |
\(\Q(\sqrt{6}) \) |
$2$ |
$[2, 0]$ |
600.1 |
\( 2^{3} \cdot 3 \cdot 5^{2} \) |
\( 2^{10} \cdot 3^{2} \cdot 5^{18} \) |
$2.16662$ |
$(-a+2), (a+3), (-a-1), (-a+1)$ |
$1$ |
$\Z/4\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{7} \) |
$0.767426000$ |
$1.328374321$ |
3.329441145 |
\( \frac{127702652341796}{457763671875} a + \frac{445172276244514}{457763671875} \) |
\( \bigl[a\) , \( -1\) , \( 0\) , \( -35 a + 136\) , \( -590 a + 1425\bigr] \) |
${y}^2+a{x}{y}={x}^{3}-{x}^{2}+\left(-35a+136\right){x}-590a+1425$ |
600.1-g4 |
600.1-g |
$8$ |
$16$ |
\(\Q(\sqrt{6}) \) |
$2$ |
$[2, 0]$ |
600.1 |
\( 2^{3} \cdot 3 \cdot 5^{2} \) |
\( 2^{8} \cdot 3^{4} \cdot 5^{12} \) |
$2.16662$ |
$(-a+2), (a+3), (-a-1), (-a+1)$ |
$1$ |
$\Z/2\Z\oplus\Z/4\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2Cs |
$1$ |
\( 2^{8} \) |
$0.383713000$ |
$5.313497284$ |
3.329441145 |
\( -\frac{3757835312}{3515625} a + \frac{15542863492}{3515625} \) |
\( \bigl[a\) , \( -1\) , \( 0\) , \( 25 a - 74\) , \( -104 a + 249\bigr] \) |
${y}^2+a{x}{y}={x}^{3}-{x}^{2}+\left(25a-74\right){x}-104a+249$ |
600.1-g5 |
600.1-g |
$8$ |
$16$ |
\(\Q(\sqrt{6}) \) |
$2$ |
$[2, 0]$ |
600.1 |
\( 2^{3} \cdot 3 \cdot 5^{2} \) |
\( 2^{4} \cdot 3^{2} \cdot 5^{6} \) |
$2.16662$ |
$(-a+2), (a+3), (-a-1), (-a+1)$ |
$1$ |
$\Z/2\Z\oplus\Z/4\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2Cs |
$1$ |
\( 2^{5} \) |
$0.767426000$ |
$21.25398913$ |
3.329441145 |
\( -\frac{14957995904}{1875} a + \frac{36917201264}{1875} \) |
\( \bigl[a\) , \( -1\) , \( 0\) , \( 25 a - 69\) , \( -111 a + 279\bigr] \) |
${y}^2+a{x}{y}={x}^{3}-{x}^{2}+\left(25a-69\right){x}-111a+279$ |
600.1-g6 |
600.1-g |
$8$ |
$16$ |
\(\Q(\sqrt{6}) \) |
$2$ |
$[2, 0]$ |
600.1 |
\( 2^{3} \cdot 3 \cdot 5^{2} \) |
\( 2^{10} \cdot 3^{8} \cdot 5^{12} \) |
$2.16662$ |
$(-a+2), (a+3), (-a-1), (-a+1)$ |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2Cs |
$1$ |
\( 2^{7} \) |
$0.767426000$ |
$1.328374321$ |
3.329441145 |
\( \frac{3685775618228}{31640625} a + \frac{9317132811898}{31640625} \) |
\( \bigl[a\) , \( -1\) , \( 0\) , \( 85 a - 364\) , \( 830 a - 2807\bigr] \) |
${y}^2+a{x}{y}={x}^{3}-{x}^{2}+\left(85a-364\right){x}+830a-2807$ |
600.1-g7 |
600.1-g |
$8$ |
$16$ |
\(\Q(\sqrt{6}) \) |
$2$ |
$[2, 0]$ |
600.1 |
\( 2^{3} \cdot 3 \cdot 5^{2} \) |
\( - 2^{8} \cdot 3 \cdot 5^{3} \) |
$2.16662$ |
$(-a+2), (a+3), (-a-1), (-a+1)$ |
$1$ |
$\Z/4\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{2} \) |
$1.534852000$ |
$21.25398913$ |
3.329441145 |
\( \frac{332552544256}{75} a + \frac{271527876608}{25} \) |
\( \bigl[0\) , \( -a - 1\) , \( 0\) , \( -626 a - 1533\) , \( 14087 a + 34506\bigr] \) |
${y}^2={x}^{3}+\left(-a-1\right){x}^{2}+\left(-626a-1533\right){x}+14087a+34506$ |
600.1-g8 |
600.1-g |
$8$ |
$16$ |
\(\Q(\sqrt{6}) \) |
$2$ |
$[2, 0]$ |
600.1 |
\( 2^{3} \cdot 3 \cdot 5^{2} \) |
\( - 2^{11} \cdot 3^{16} \cdot 5^{6} \) |
$2.16662$ |
$(-a+2), (a+3), (-a-1), (-a+1)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$4$ |
\( 2^{4} \) |
$1.534852000$ |
$0.332093580$ |
3.329441145 |
\( \frac{280668078691379467}{4100625} a + \frac{687493580633880022}{4100625} \) |
\( \bigl[a\) , \( -1\) , \( 0\) , \( -665 a - 864\) , \( -5070 a - 35907\bigr] \) |
${y}^2+a{x}{y}={x}^{3}-{x}^{2}+\left(-665a-864\right){x}-5070a-35907$ |
600.1-h1 |
600.1-h |
$6$ |
$8$ |
\(\Q(\sqrt{6}) \) |
$2$ |
$[2, 0]$ |
600.1 |
\( 2^{3} \cdot 3 \cdot 5^{2} \) |
\( - 2^{11} \cdot 3 \cdot 5^{10} \) |
$2.16662$ |
$(-a+2), (a+3), (-a-1), (-a+1)$ |
$0$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$4$ |
\( 2^{4} \) |
$1$ |
$0.977661416$ |
3.193028815 |
\( -\frac{1248072326587691}{1171875} a + \frac{1019046787164648}{390625} \) |
\( \bigl[a\) , \( 1\) , \( a\) , \( 110 a - 275\) , \( 1046 a - 2769\bigr] \) |
${y}^2+a{x}{y}+a{y}={x}^{3}+{x}^{2}+\left(110a-275\right){x}+1046a-2769$ |
600.1-h2 |
600.1-h |
$6$ |
$8$ |
\(\Q(\sqrt{6}) \) |
$2$ |
$[2, 0]$ |
600.1 |
\( 2^{3} \cdot 3 \cdot 5^{2} \) |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \) |
$2.16662$ |
$(-a+2), (a+3), (-a-1), (-a+1)$ |
$0$ |
$\Z/4\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2B |
$4$ |
\( 2^{2} \) |
$1$ |
$15.64258266$ |
3.193028815 |
\( \frac{21296}{15} \) |
\( \bigl[a\) , \( 1\) , \( a\) , \( 0\) , \( 0\bigr] \) |
${y}^2+a{x}{y}+a{y}={x}^{3}+{x}^{2}$ |
600.1-h3 |
600.1-h |
$6$ |
$8$ |
\(\Q(\sqrt{6}) \) |
$2$ |
$[2, 0]$ |
600.1 |
\( 2^{3} \cdot 3 \cdot 5^{2} \) |
\( 2^{8} \cdot 3^{4} \cdot 5^{4} \) |
$2.16662$ |
$(-a+2), (a+3), (-a-1), (-a+1)$ |
$0$ |
$\Z/2\Z\oplus\Z/4\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2Cs |
$1$ |
\( 2^{6} \) |
$1$ |
$15.64258266$ |
3.193028815 |
\( \frac{470596}{225} \) |
\( \bigl[a\) , \( 1\) , \( a\) , \( -5\) , \( -3\bigr] \) |
${y}^2+a{x}{y}+a{y}={x}^{3}+{x}^{2}-5{x}-3$ |
600.1-h4 |
600.1-h |
$6$ |
$8$ |
\(\Q(\sqrt{6}) \) |
$2$ |
$[2, 0]$ |
600.1 |
\( 2^{3} \cdot 3 \cdot 5^{2} \) |
\( 2^{10} \cdot 3^{2} \cdot 5^{8} \) |
$2.16662$ |
$(-a+2), (a+3), (-a-1), (-a+1)$ |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2Cs |
$1$ |
\( 2^{6} \) |
$1$ |
$3.910645665$ |
3.193028815 |
\( \frac{136835858}{1875} \) |
\( \bigl[a\) , \( 1\) , \( a\) , \( -35\) , \( -105\bigr] \) |
${y}^2+a{x}{y}+a{y}={x}^{3}+{x}^{2}-35{x}-105$ |
600.1-h5 |
600.1-h |
$6$ |
$8$ |
\(\Q(\sqrt{6}) \) |
$2$ |
$[2, 0]$ |
600.1 |
\( 2^{3} \cdot 3 \cdot 5^{2} \) |
\( 2^{10} \cdot 3^{8} \cdot 5^{2} \) |
$2.16662$ |
$(-a+2), (a+3), (-a-1), (-a+1)$ |
$0$ |
$\Z/4\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
|
|
$2$ |
2B |
$1$ |
\( 2^{4} \) |
$1$ |
$15.64258266$ |
3.193028815 |
\( \frac{546718898}{405} \) |
\( \bigl[a\) , \( 1\) , \( a\) , \( -55\) , \( 107\bigr] \) |
${y}^2+a{x}{y}+a{y}={x}^{3}+{x}^{2}-55{x}+107$ |
600.1-h6 |
600.1-h |
$6$ |
$8$ |
\(\Q(\sqrt{6}) \) |
$2$ |
$[2, 0]$ |
600.1 |
\( 2^{3} \cdot 3 \cdot 5^{2} \) |
\( - 2^{11} \cdot 3 \cdot 5^{10} \) |
$2.16662$ |
$(-a+2), (a+3), (-a-1), (-a+1)$ |
$0$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$4$ |
\( 2^{4} \) |
$1$ |
$0.977661416$ |
3.193028815 |
\( \frac{1248072326587691}{1171875} a + \frac{1019046787164648}{390625} \) |
\( \bigl[a\) , \( 1\) , \( a\) , \( -110 a - 275\) , \( -1046 a - 2769\bigr] \) |
${y}^2+a{x}{y}+a{y}={x}^{3}+{x}^{2}+\left(-110a-275\right){x}-1046a-2769$ |
600.1-i1 |
600.1-i |
$4$ |
$4$ |
\(\Q(\sqrt{6}) \) |
$2$ |
$[2, 0]$ |
600.1 |
\( 2^{3} \cdot 3 \cdot 5^{2} \) |
\( - 2^{8} \cdot 3^{3} \cdot 5^{3} \) |
$2.16662$ |
$(-a+2), (a+3), (-a-1), (-a+1)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{2} \) |
$0.953585644$ |
$7.736019084$ |
3.011629979 |
\( -\frac{3082096}{225} a + \frac{2607052}{75} \) |
\( \bigl[a\) , \( a - 1\) , \( 0\) , \( 4 a + 10\) , \( 0\bigr] \) |
${y}^2+a{x}{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(4a+10\right){x}$ |
600.1-i2 |
600.1-i |
$4$ |
$4$ |
\(\Q(\sqrt{6}) \) |
$2$ |
$[2, 0]$ |
600.1 |
\( 2^{3} \cdot 3 \cdot 5^{2} \) |
\( 2^{10} \cdot 3^{6} \cdot 5^{6} \) |
$2.16662$ |
$(-a+2), (a+3), (-a-1), (-a+1)$ |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2Cs |
$1$ |
\( 2^{5} \) |
$0.476792822$ |
$7.736019084$ |
3.011629979 |
\( \frac{1019116}{16875} a + \frac{38497694}{16875} \) |
\( \bigl[a\) , \( a - 1\) , \( 0\) , \( -16 a - 40\) , \( -48 a - 116\bigr] \) |
${y}^2+a{x}{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-16a-40\right){x}-48a-116$ |
*The rank, regulator and analytic order of Ш are
not known for all curves in the database; curves for which these are
unknown will not appear in searches specifying one of these
quantities.