Learn more

Refine search


Results (1-50 of 100 matches)

Next   displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
600.1-a1 600.1-a \(\Q(\sqrt{6}) \) \( 2^{3} \cdot 3 \cdot 5^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.443554612$ $6.199205081$ 3.653369488 \( -\frac{1248072326587691}{1171875} a + \frac{1019046787164648}{390625} \) \( \bigl[a\) , \( a + 1\) , \( 0\) , \( -90 a - 226\) , \( 39852 a + 97622\bigr] \) ${y}^2+a{x}{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(-90a-226\right){x}+39852a+97622$
600.1-a2 600.1-a \(\Q(\sqrt{6}) \) \( 2^{3} \cdot 3 \cdot 5^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.721777306$ $12.39841016$ 3.653369488 \( \frac{21296}{15} \) \( \bigl[a\) , \( -a + 1\) , \( 0\) , \( -20 a + 49\) , \( 0\bigr] \) ${y}^2+a{x}{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-20a+49\right){x}$
600.1-a3 600.1-a \(\Q(\sqrt{6}) \) \( 2^{3} \cdot 3 \cdot 5^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $0.360888653$ $12.39841016$ 3.653369488 \( \frac{470596}{225} \) \( \bigl[a\) , \( -a + 1\) , \( 0\) , \( 80 a - 196\) , \( 396 a - 970\bigr] \) ${y}^2+a{x}{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(80a-196\right){x}+396a-970$
600.1-a4 600.1-a \(\Q(\sqrt{6}) \) \( 2^{3} \cdot 3 \cdot 5^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $0.721777306$ $12.39841016$ 3.653369488 \( \frac{136835858}{1875} \) \( \bigl[a\) , \( -a + 1\) , \( 0\) , \( 680 a - 1666\) , \( -13860 a + 33950\bigr] \) ${y}^2+a{x}{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(680a-1666\right){x}-13860a+33950$
600.1-a5 600.1-a \(\Q(\sqrt{6}) \) \( 2^{3} \cdot 3 \cdot 5^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.721777306$ $3.099602540$ 3.653369488 \( \frac{546718898}{405} \) \( \bigl[a\) , \( a + 1\) , \( 0\) , \( -1080 a - 2646\) , \( -32076 a - 78570\bigr] \) ${y}^2+a{x}{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(-1080a-2646\right){x}-32076a-78570$
600.1-a6 600.1-a \(\Q(\sqrt{6}) \) \( 2^{3} \cdot 3 \cdot 5^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.443554612$ $6.199205081$ 3.653369488 \( \frac{1248072326587691}{1171875} a + \frac{1019046787164648}{390625} \) \( \bigl[a\) , \( -a + 1\) , \( 0\) , \( 90 a - 226\) , \( -39852 a + 97622\bigr] \) ${y}^2+a{x}{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(90a-226\right){x}-39852a+97622$
600.1-b1 600.1-b \(\Q(\sqrt{6}) \) \( 2^{3} \cdot 3 \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $2.000872309$ 1.633705399 \( -\frac{4273743067}{455625} a + \frac{11101875022}{455625} \) \( \bigl[a\) , \( a - 1\) , \( a\) , \( 149 a + 357\) , \( -606 a - 1488\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(149a+357\right){x}-606a-1488$
600.1-b2 600.1-b \(\Q(\sqrt{6}) \) \( 2^{3} \cdot 3 \cdot 5^{2} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $8.003489239$ 1.633705399 \( -\frac{1019116}{16875} a + \frac{38497694}{16875} \) \( \bigl[a\) , \( a - 1\) , \( a\) , \( -41 a - 103\) , \( -140 a - 344\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-41a-103\right){x}-140a-344$
600.1-b3 600.1-b \(\Q(\sqrt{6}) \) \( 2^{3} \cdot 3 \cdot 5^{2} \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $16.00697847$ 1.633705399 \( \frac{3082096}{225} a + \frac{2607052}{75} \) \( \bigl[a\) , \( a - 1\) , \( a\) , \( -21 a - 53\) , \( 62 a + 150\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-21a-53\right){x}+62a+150$
600.1-b4 600.1-b \(\Q(\sqrt{6}) \) \( 2^{3} \cdot 3 \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $4.001744619$ 1.633705399 \( -\frac{667986634693}{3515625} a + \frac{2267167244054}{1171875} \) \( \bigl[a\) , \( a - 1\) , \( a\) , \( -551 a - 1363\) , \( -11642 a - 28496\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-551a-1363\right){x}-11642a-28496$
600.1-c1 600.1-c \(\Q(\sqrt{6}) \) \( 2^{3} \cdot 3 \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $2.016182676$ 0.823103130 \( -\frac{19599592200920402803}{1373291015625} a + \frac{48008669816042687402}{1373291015625} \) \( \bigl[a\) , \( -a - 1\) , \( a\) , \( -2127 a - 5301\) , \( 243522 a + 596748\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-2127a-5301\right){x}+243522a+596748$
600.1-c2 600.1-c \(\Q(\sqrt{6}) \) \( 2^{3} \cdot 3 \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.008091338$ 0.823103130 \( -\frac{23560288985094256}{75} a + \frac{19236895401998092}{25} \) \( \bigl[a\) , \( -a - 1\) , \( a\) , \( -57 a - 161\) , \( -3628 a - 8946\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-57a-161\right){x}-3628a-8946$
600.1-c3 600.1-c \(\Q(\sqrt{6}) \) \( 2^{3} \cdot 3 \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.008091338$ 0.823103130 \( \frac{127702652341796}{457763671875} a + \frac{445172276244514}{457763671875} \) \( \bigl[a\) , \( -a - 1\) , \( a\) , \( 1003 a + 2459\) , \( 5004 a + 12256\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(1003a+2459\right){x}+5004a+12256$
600.1-c4 600.1-c \(\Q(\sqrt{6}) \) \( 2^{3} \cdot 3 \cdot 5^{2} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $4.032365352$ 0.823103130 \( -\frac{3757835312}{3515625} a + \frac{15542863492}{3515625} \) \( \bigl[a\) , \( -a - 1\) , \( a\) , \( -257 a - 631\) , \( 882 a + 2158\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-257a-631\right){x}+882a+2158$
600.1-c5 600.1-c \(\Q(\sqrt{6}) \) \( 2^{3} \cdot 3 \cdot 5^{2} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $4.032365352$ 0.823103130 \( -\frac{14957995904}{1875} a + \frac{36917201264}{1875} \) \( \bigl[a\) , \( -a - 1\) , \( a\) , \( -157 a - 386\) , \( -1563 a - 3831\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-157a-386\right){x}-1563a-3831$
600.1-c6 600.1-c \(\Q(\sqrt{6}) \) \( 2^{3} \cdot 3 \cdot 5^{2} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $4.032365352$ 0.823103130 \( \frac{3685775618228}{31640625} a + \frac{9317132811898}{31640625} \) \( \bigl[a\) , \( -a - 1\) , \( a\) , \( -3117 a - 7641\) , \( 150120 a + 367716\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-3117a-7641\right){x}+150120a+367716$
600.1-c7 600.1-c \(\Q(\sqrt{6}) \) \( 2^{3} \cdot 3 \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $2.016182676$ 0.823103130 \( \frac{332552544256}{75} a + \frac{271527876608}{25} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( -31\) , \( 2 a - 62\bigr] \) ${y}^2={x}^{3}-{x}^{2}-31{x}+2a-62$
600.1-c8 600.1-c \(\Q(\sqrt{6}) \) \( 2^{3} \cdot 3 \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $2.016182676$ 0.823103130 \( \frac{280668078691379467}{4100625} a + \frac{687493580633880022}{4100625} \) \( \bigl[a\) , \( a - 1\) , \( a\) , \( -15303 a + 37459\) , \( -4665940 a + 11429196\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-15303a+37459\right){x}-4665940a+11429196$
600.1-d1 600.1-d \(\Q(\sqrt{6}) \) \( 2^{3} \cdot 3 \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.076330995$ 1.757641155 \( -\frac{20381618209534}{675} a + \frac{149773694236798}{2025} \) \( \bigl[a\) , \( a - 1\) , \( a\) , \( 77 a + 185\) , \( -127866 a - 313208\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(77a+185\right){x}-127866a-313208$
600.1-d2 600.1-d \(\Q(\sqrt{6}) \) \( 2^{3} \cdot 3 \cdot 5^{2} \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $8.610647963$ 1.757641155 \( -\frac{51371516824}{1171875} a + \frac{42420366228}{390625} \) \( \bigl[a\) , \( -1\) , \( a\) , \( 210 a - 517\) , \( -2546 a + 6235\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}-{x}^{2}+\left(210a-517\right){x}-2546a+6235$
600.1-d3 600.1-d \(\Q(\sqrt{6}) \) \( 2^{3} \cdot 3 \cdot 5^{2} \) 0 $\Z/2\Z\oplus\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $17.22129592$ 1.757641155 \( \frac{85312}{625} a + \frac{3891824}{1875} \) \( \bigl[a\) , \( -1\) , \( a\) , \( 20 a - 52\) , \( 10 a - 26\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}-{x}^{2}+\left(20a-52\right){x}+10a-26$
600.1-d4 600.1-d \(\Q(\sqrt{6}) \) \( 2^{3} \cdot 3 \cdot 5^{2} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $4.305323981$ 1.757641155 \( -\frac{129002216}{1875} a + \frac{1219648732}{5625} \) \( \bigl[a\) , \( -1\) , \( a\) , \( 230 a - 567\) , \( 3006 a - 7365\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}-{x}^{2}+\left(230a-567\right){x}+3006a-7365$
600.1-d5 600.1-d \(\Q(\sqrt{6}) \) \( 2^{3} \cdot 3 \cdot 5^{2} \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $17.22129592$ 1.757641155 \( \frac{35713024}{75} a + \frac{29202432}{25} \) \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( -6 a - 13\) , \( 21 a + 52\bigr] \) ${y}^2={x}^{3}+\left(-a-1\right){x}^{2}+\left(-6a-13\right){x}+21a+52$
600.1-d6 600.1-d \(\Q(\sqrt{6}) \) \( 2^{3} \cdot 3 \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.076330995$ 1.757641155 \( \frac{180287159002538}{390625} a + \frac{1324834474677574}{1171875} \) \( \bigl[a\) , \( -1\) , \( a\) , \( 140 a - 357\) , \( 5280 a - 12951\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}-{x}^{2}+\left(140a-357\right){x}+5280a-12951$
600.1-e1 600.1-e \(\Q(\sqrt{6}) \) \( 2^{3} \cdot 3 \cdot 5^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.953585644$ $3.868009542$ 3.011629979 \( -\frac{4273743067}{455625} a + \frac{11101875022}{455625} \) \( \bigl[a\) , \( -a - 1\) , \( 0\) , \( 126 a - 300\) , \( -1044 a + 2556\bigr] \) ${y}^2+a{x}{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(126a-300\right){x}-1044a+2556$
600.1-e2 600.1-e \(\Q(\sqrt{6}) \) \( 2^{3} \cdot 3 \cdot 5^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $0.476792822$ $7.736019084$ 3.011629979 \( -\frac{1019116}{16875} a + \frac{38497694}{16875} \) \( \bigl[a\) , \( -a - 1\) , \( 0\) , \( 16 a - 40\) , \( 48 a - 116\bigr] \) ${y}^2+a{x}{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(16a-40\right){x}+48a-116$
600.1-e3 600.1-e \(\Q(\sqrt{6}) \) \( 2^{3} \cdot 3 \cdot 5^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.953585644$ $7.736019084$ 3.011629979 \( \frac{3082096}{225} a + \frac{2607052}{75} \) \( \bigl[a\) , \( -a - 1\) , \( 0\) , \( -4 a + 10\) , \( 0\bigr] \) ${y}^2+a{x}{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-4a+10\right){x}$
600.1-e4 600.1-e \(\Q(\sqrt{6}) \) \( 2^{3} \cdot 3 \cdot 5^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.953585644$ $3.868009542$ 3.011629979 \( -\frac{667986634693}{3515625} a + \frac{2267167244054}{1171875} \) \( \bigl[a\) , \( -a - 1\) , \( 0\) , \( 226 a - 580\) , \( 3252 a - 7892\bigr] \) ${y}^2+a{x}{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(226a-580\right){x}+3252a-7892$
600.1-f1 600.1-f \(\Q(\sqrt{6}) \) \( 2^{3} \cdot 3 \cdot 5^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.409729395$ $7.551861354$ 2.526419712 \( -\frac{20381618209534}{675} a + \frac{149773694236798}{2025} \) \( \bigl[a\) , \( -a - 1\) , \( 0\) , \( 38 a - 88\) , \( -28 a + 712\bigr] \) ${y}^2+a{x}{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(38a-88\right){x}-28a+712$
600.1-f2 600.1-f \(\Q(\sqrt{6}) \) \( 2^{3} \cdot 3 \cdot 5^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.819458790$ $3.775930677$ 2.526419712 \( -\frac{51371516824}{1171875} a + \frac{42420366228}{390625} \) \( \bigl[a\) , \( -a - 1\) , \( 0\) , \( 8 a + 12\) , \( -8 a - 42\bigr] \) ${y}^2+a{x}{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(8a+12\right){x}-8a-42$
600.1-f3 600.1-f \(\Q(\sqrt{6}) \) \( 2^{3} \cdot 3 \cdot 5^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $0.409729395$ $15.10372270$ 2.526419712 \( \frac{85312}{625} a + \frac{3891824}{1875} \) \( \bigl[a\) , \( -a - 1\) , \( 0\) , \( -2 a - 3\) , \( 0\bigr] \) ${y}^2+a{x}{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-2a-3\right){x}$
600.1-f4 600.1-f \(\Q(\sqrt{6}) \) \( 2^{3} \cdot 3 \cdot 5^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $0.204864697$ $15.10372270$ 2.526419712 \( -\frac{129002216}{1875} a + \frac{1219648732}{5625} \) \( \bigl[a\) , \( -a - 1\) , \( 0\) , \( -12 a - 38\) , \( 52 a + 132\bigr] \) ${y}^2+a{x}{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-12a-38\right){x}+52a+132$
600.1-f5 600.1-f \(\Q(\sqrt{6}) \) \( 2^{3} \cdot 3 \cdot 5^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.819458790$ $7.551861354$ 2.526419712 \( \frac{35713024}{75} a + \frac{29202432}{25} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( -20 a + 49\) , \( 0\bigr] \) ${y}^2={x}^{3}-{x}^{2}+\left(-20a+49\right){x}$
600.1-f6 600.1-f \(\Q(\sqrt{6}) \) \( 2^{3} \cdot 3 \cdot 5^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.409729395$ $7.551861354$ 2.526419712 \( \frac{180287159002538}{390625} a + \frac{1324834474677574}{1171875} \) \( \bigl[a\) , \( -a - 1\) , \( 0\) , \( -222 a - 548\) , \( 2980 a + 7320\bigr] \) ${y}^2+a{x}{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-222a-548\right){x}+2980a+7320$
600.1-g1 600.1-g \(\Q(\sqrt{6}) \) \( 2^{3} \cdot 3 \cdot 5^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.534852000$ $0.332093580$ 3.329441145 \( -\frac{19599592200920402803}{1373291015625} a + \frac{48008669816042687402}{1373291015625} \) \( \bigl[a\) , \( -1\) , \( 0\) , \( 1795 a - 4504\) , \( 66026 a - 162971\bigr] \) ${y}^2+a{x}{y}={x}^{3}-{x}^{2}+\left(1795a-4504\right){x}+66026a-162971$
600.1-g2 600.1-g \(\Q(\sqrt{6}) \) \( 2^{3} \cdot 3 \cdot 5^{2} \) $1$ $\Z/4\Z$ $\mathrm{SU}(2)$ $1.534852000$ $10.62699456$ 3.329441145 \( -\frac{23560288985094256}{75} a + \frac{19236895401998092}{25} \) \( \bigl[a\) , \( -1\) , \( 0\) , \( 425 a - 1044\) , \( -7406 a + 18159\bigr] \) ${y}^2+a{x}{y}={x}^{3}-{x}^{2}+\left(425a-1044\right){x}-7406a+18159$
600.1-g3 600.1-g \(\Q(\sqrt{6}) \) \( 2^{3} \cdot 3 \cdot 5^{2} \) $1$ $\Z/4\Z$ $\mathrm{SU}(2)$ $0.767426000$ $1.328374321$ 3.329441145 \( \frac{127702652341796}{457763671875} a + \frac{445172276244514}{457763671875} \) \( \bigl[a\) , \( -1\) , \( 0\) , \( -35 a + 136\) , \( -590 a + 1425\bigr] \) ${y}^2+a{x}{y}={x}^{3}-{x}^{2}+\left(-35a+136\right){x}-590a+1425$
600.1-g4 600.1-g \(\Q(\sqrt{6}) \) \( 2^{3} \cdot 3 \cdot 5^{2} \) $1$ $\Z/2\Z\oplus\Z/4\Z$ $\mathrm{SU}(2)$ $0.383713000$ $5.313497284$ 3.329441145 \( -\frac{3757835312}{3515625} a + \frac{15542863492}{3515625} \) \( \bigl[a\) , \( -1\) , \( 0\) , \( 25 a - 74\) , \( -104 a + 249\bigr] \) ${y}^2+a{x}{y}={x}^{3}-{x}^{2}+\left(25a-74\right){x}-104a+249$
600.1-g5 600.1-g \(\Q(\sqrt{6}) \) \( 2^{3} \cdot 3 \cdot 5^{2} \) $1$ $\Z/2\Z\oplus\Z/4\Z$ $\mathrm{SU}(2)$ $0.767426000$ $21.25398913$ 3.329441145 \( -\frac{14957995904}{1875} a + \frac{36917201264}{1875} \) \( \bigl[a\) , \( -1\) , \( 0\) , \( 25 a - 69\) , \( -111 a + 279\bigr] \) ${y}^2+a{x}{y}={x}^{3}-{x}^{2}+\left(25a-69\right){x}-111a+279$
600.1-g6 600.1-g \(\Q(\sqrt{6}) \) \( 2^{3} \cdot 3 \cdot 5^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $0.767426000$ $1.328374321$ 3.329441145 \( \frac{3685775618228}{31640625} a + \frac{9317132811898}{31640625} \) \( \bigl[a\) , \( -1\) , \( 0\) , \( 85 a - 364\) , \( 830 a - 2807\bigr] \) ${y}^2+a{x}{y}={x}^{3}-{x}^{2}+\left(85a-364\right){x}+830a-2807$
600.1-g7 600.1-g \(\Q(\sqrt{6}) \) \( 2^{3} \cdot 3 \cdot 5^{2} \) $1$ $\Z/4\Z$ $\mathrm{SU}(2)$ $1.534852000$ $21.25398913$ 3.329441145 \( \frac{332552544256}{75} a + \frac{271527876608}{25} \) \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( -626 a - 1533\) , \( 14087 a + 34506\bigr] \) ${y}^2={x}^{3}+\left(-a-1\right){x}^{2}+\left(-626a-1533\right){x}+14087a+34506$
600.1-g8 600.1-g \(\Q(\sqrt{6}) \) \( 2^{3} \cdot 3 \cdot 5^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.534852000$ $0.332093580$ 3.329441145 \( \frac{280668078691379467}{4100625} a + \frac{687493580633880022}{4100625} \) \( \bigl[a\) , \( -1\) , \( 0\) , \( -665 a - 864\) , \( -5070 a - 35907\bigr] \) ${y}^2+a{x}{y}={x}^{3}-{x}^{2}+\left(-665a-864\right){x}-5070a-35907$
600.1-h1 600.1-h \(\Q(\sqrt{6}) \) \( 2^{3} \cdot 3 \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.977661416$ 3.193028815 \( -\frac{1248072326587691}{1171875} a + \frac{1019046787164648}{390625} \) \( \bigl[a\) , \( 1\) , \( a\) , \( 110 a - 275\) , \( 1046 a - 2769\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+{x}^{2}+\left(110a-275\right){x}+1046a-2769$
600.1-h2 600.1-h \(\Q(\sqrt{6}) \) \( 2^{3} \cdot 3 \cdot 5^{2} \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $15.64258266$ 3.193028815 \( \frac{21296}{15} \) \( \bigl[a\) , \( 1\) , \( a\) , \( 0\) , \( 0\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+{x}^{2}$
600.1-h3 600.1-h \(\Q(\sqrt{6}) \) \( 2^{3} \cdot 3 \cdot 5^{2} \) 0 $\Z/2\Z\oplus\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $15.64258266$ 3.193028815 \( \frac{470596}{225} \) \( \bigl[a\) , \( 1\) , \( a\) , \( -5\) , \( -3\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+{x}^{2}-5{x}-3$
600.1-h4 600.1-h \(\Q(\sqrt{6}) \) \( 2^{3} \cdot 3 \cdot 5^{2} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $3.910645665$ 3.193028815 \( \frac{136835858}{1875} \) \( \bigl[a\) , \( 1\) , \( a\) , \( -35\) , \( -105\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+{x}^{2}-35{x}-105$
600.1-h5 600.1-h \(\Q(\sqrt{6}) \) \( 2^{3} \cdot 3 \cdot 5^{2} \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $15.64258266$ 3.193028815 \( \frac{546718898}{405} \) \( \bigl[a\) , \( 1\) , \( a\) , \( -55\) , \( 107\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+{x}^{2}-55{x}+107$
600.1-h6 600.1-h \(\Q(\sqrt{6}) \) \( 2^{3} \cdot 3 \cdot 5^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.977661416$ 3.193028815 \( \frac{1248072326587691}{1171875} a + \frac{1019046787164648}{390625} \) \( \bigl[a\) , \( 1\) , \( a\) , \( -110 a - 275\) , \( -1046 a - 2769\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+{x}^{2}+\left(-110a-275\right){x}-1046a-2769$
600.1-i1 600.1-i \(\Q(\sqrt{6}) \) \( 2^{3} \cdot 3 \cdot 5^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.953585644$ $7.736019084$ 3.011629979 \( -\frac{3082096}{225} a + \frac{2607052}{75} \) \( \bigl[a\) , \( a - 1\) , \( 0\) , \( 4 a + 10\) , \( 0\bigr] \) ${y}^2+a{x}{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(4a+10\right){x}$
600.1-i2 600.1-i \(\Q(\sqrt{6}) \) \( 2^{3} \cdot 3 \cdot 5^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $0.476792822$ $7.736019084$ 3.011629979 \( \frac{1019116}{16875} a + \frac{38497694}{16875} \) \( \bigl[a\) , \( a - 1\) , \( 0\) , \( -16 a - 40\) , \( -48 a - 116\bigr] \) ${y}^2+a{x}{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-16a-40\right){x}-48a-116$
Next   displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.