Learn more

Refine search


Results (12 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
48.1-a1 48.1-a \(\Q(\sqrt{6}) \) \( 2^{4} \cdot 3 \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $2.325279868$ 1.898583062 \( \frac{207646}{6561} \) \( \bigl[a\) , \( 1\) , \( 0\) , \( 6\) , \( -18\bigr] \) ${y}^2+a{x}{y}={x}^{3}+{x}^{2}+6{x}-18$
48.1-a2 48.1-a \(\Q(\sqrt{6}) \) \( 2^{4} \cdot 3 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $18.60223895$ 1.898583062 \( \frac{2048}{3} \) \( \bigl[0\) , \( -a + 1\) , \( 0\) , \( -14 a + 35\) , \( -67 a + 164\bigr] \) ${y}^2={x}^{3}+\left(-a+1\right){x}^{2}+\left(-14a+35\right){x}-67a+164$
48.1-a3 48.1-a \(\Q(\sqrt{6}) \) \( 2^{4} \cdot 3 \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $37.20447790$ 1.898583062 \( \frac{35152}{9} \) \( \bigl[a\) , \( 1\) , \( 0\) , \( 1\) , \( 0\bigr] \) ${y}^2+a{x}{y}={x}^{3}+{x}^{2}+{x}$
48.1-a4 48.1-a \(\Q(\sqrt{6}) \) \( 2^{4} \cdot 3 \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $9.301119475$ 1.898583062 \( \frac{1556068}{81} \) \( \bigl[a\) , \( 1\) , \( 0\) , \( -4\) , \( -10\bigr] \) ${y}^2+a{x}{y}={x}^{3}+{x}^{2}-4{x}-10$
48.1-a5 48.1-a \(\Q(\sqrt{6}) \) \( 2^{4} \cdot 3 \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $37.20447790$ 1.898583062 \( \frac{28756228}{3} \) \( \bigl[a\) , \( 1\) , \( 0\) , \( -14\) , \( 12\bigr] \) ${y}^2+a{x}{y}={x}^{3}+{x}^{2}-14{x}+12$
48.1-a6 48.1-a \(\Q(\sqrt{6}) \) \( 2^{4} \cdot 3 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $2.325279868$ 1.898583062 \( \frac{3065617154}{9} \) \( \bigl[a\) , \( 1\) , \( 0\) , \( -94\) , \( -442\bigr] \) ${y}^2+a{x}{y}={x}^{3}+{x}^{2}-94{x}-442$
48.1-b1 48.1-b \(\Q(\sqrt{6}) \) \( 2^{4} \cdot 3 \) 0 $\Z/8\Z$ $\mathrm{SU}(2)$ $1$ $5.683508517$ 1.160141318 \( \frac{207646}{6561} \) \( \bigl[a\) , \( -a + 1\) , \( a\) , \( -80 a + 193\) , \( -4455 a + 10911\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-80a+193\right){x}-4455a+10911$
48.1-b2 48.1-b \(\Q(\sqrt{6}) \) \( 2^{4} \cdot 3 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $11.36701703$ 1.160141318 \( \frac{2048}{3} \) \( \bigl[0\) , \( 1\) , \( 0\) , \( 1\) , \( 0\bigr] \) ${y}^2={x}^{3}+{x}^{2}+{x}$
48.1-b3 48.1-b \(\Q(\sqrt{6}) \) \( 2^{4} \cdot 3 \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $22.73403407$ 1.160141318 \( \frac{35152}{9} \) \( \bigl[a\) , \( -a + 1\) , \( a\) , \( 20 a - 52\) , \( 99 a - 244\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(20a-52\right){x}+99a-244$
48.1-b4 48.1-b \(\Q(\sqrt{6}) \) \( 2^{4} \cdot 3 \) 0 $\Z/2\Z\oplus\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $22.73403407$ 1.160141318 \( \frac{1556068}{81} \) \( \bigl[a\) , \( -a + 1\) , \( a\) , \( 120 a - 297\) , \( -891 a + 2181\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(120a-297\right){x}-891a+2181$
48.1-b5 48.1-b \(\Q(\sqrt{6}) \) \( 2^{4} \cdot 3 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $5.683508517$ 1.160141318 \( \frac{28756228}{3} \) \( \bigl[a\) , \( a + 1\) , \( a\) , \( -320 a - 787\) , \( -5445 a - 13339\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(-320a-787\right){x}-5445a-13339$
48.1-b6 48.1-b \(\Q(\sqrt{6}) \) \( 2^{4} \cdot 3 \) 0 $\Z/8\Z$ $\mathrm{SU}(2)$ $1$ $22.73403407$ 1.160141318 \( \frac{3065617154}{9} \) \( \bigl[a\) , \( a + 1\) , \( a\) , \( -1920 a - 4707\) , \( 68607 a + 168051\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(-1920a-4707\right){x}+68607a+168051$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.