# Properties

 Label 2.2.24.1-23.1-a2 Base field $$\Q(\sqrt{6})$$ Conductor $$\left(-2a + 1\right)$$ Conductor norm $$23$$ CM no Base change no Q-curve no Torsion order $$2$$ Rank $$0$$

# Learn more about

Show commands for: Magma / Pari/GP / SageMath

## Base field$$\Q(\sqrt{6})$$

Generator $$a$$, with minimal polynomial $$x^{2} - 6$$; class number $$1$$.

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-6, 0, 1]))

gp: K = nfinit(Pol(Vecrev([-6, 0, 1])));

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-6, 0, 1]);

## Weierstrass equation

$$y^2+axy+y=x^{3}+ax^{2}+\left(11a-23\right)x+20a-47$$
sage: E = EllipticCurve([K([0,1]),K([0,1]),K([1,0]),K([-23,11]),K([-47,20])])

gp: E = ellinit([Pol(Vecrev([0,1])),Pol(Vecrev([0,1])),Pol(Vecrev([1,0])),Pol(Vecrev([-23,11])),Pol(Vecrev([-47,20]))], K);

magma: E := EllipticCurve([K![0,1],K![0,1],K![1,0],K![-23,11],K![-47,20]]);

This is a global minimal model.

sage: E.is_global_minimal_model()

## Invariants

 Conductor: $$\left(-2a + 1\right)$$ = $$\left(-2a + 1\right)$$ sage: E.conductor()  gp: ellglobalred(E)[1]  magma: Conductor(E); Conductor norm: $$23$$ = $$23$$ sage: E.conductor().norm()  gp: idealnorm(ellglobalred(E)[1])  magma: Norm(Conductor(E)); Discriminant: $$( -4 a + 25 )$$ = $$\left(-2a + 1\right)^{2}$$ sage: E.discriminant()  gp: E.disc  magma: Discriminant(E); Discriminant norm: $$529$$ = $$23^{2}$$ sage: E.discriminant().norm()  gp: norm(E.disc)  magma: Norm(Discriminant(E)); j-invariant: $$\frac{1596672}{529} a + \frac{6322752}{529}$$ sage: E.j_invariant()  gp: E.j  magma: jInvariant(E); Endomorphism ring: $$\Z$$ Geometric endomorphism ring: $$\Z$$ (no potential complex multiplication) sage: E.has_cm(), E.cm_discriminant()  magma: HasComplexMultiplication(E); Sato-Tate group: $\mathrm{SU}(2)$

## Mordell-Weil group

 Rank: $$0$$ Torsion structure: $$\Z/2\Z$$ sage: T = E.torsion_subgroup(); T.invariants()  gp: T = elltors(E); T[2]  magma: T,piT := TorsionSubgroup(E); Invariants(T); Torsion generator: $\left(-2 a + \frac{7}{2} : -\frac{7}{4} a + \frac{11}{2} : 1\right)$ sage: T.gens()  gp: T[3]  magma: [piT(P) : P in Generators(T)];

## BSD invariants

 Analytic rank: $$0$$ sage: E.rank()  magma: Rank(E); Mordell-Weil rank: $$0$$ Regulator: $$1$$ Period: $$20.7715596414871$$ Tamagawa product: $$2$$ Torsion order: $$2$$ Leading coefficient: $$2.11998842847632$$ Analytic order of Ш: $$1$$ (rounded)

## Local data at primes of bad reduction

sage: E.local_data()

magma: LocalInformation(E);

prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord($$\mathfrak{N}$$) ord($$\mathfrak{D}$$) ord$$(j)_{-}$$
$$\left(-2a + 1\right)$$ $$23$$ $$2$$ $$I_{2}$$ Non-split multiplicative $$1$$ $$1$$ $$2$$ $$2$$

## Galois Representations

The mod $$p$$ Galois Representation has maximal image for all primes $$p < 1000$$ except those listed.

prime Image of Galois Representation
$$2$$ 2B

## Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree $$d$$ for $$d=$$ 2.
Its isogeny class 23.1-a consists of curves linked by isogenies of degree 2.

## Base change

This curve is not the base change of an elliptic curve defined over $$\Q$$. It is not a $$\Q$$-curve.