Base field \(\Q(\sqrt{6}) \)
Generator \(a\), with minimal polynomial \( x^{2} - 6 \); class number \(1\).
sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-6, 0, 1]))
gp: K = nfinit(Pol(Vecrev([-6, 0, 1])));
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-6, 0, 1]);
Weierstrass equation
sage: E = EllipticCurve([K([0,0]),K([-1,1]),K([0,0]),K([-166,-64]),K([1056,418])])
gp: E = ellinit([Pol(Vecrev([0,0])),Pol(Vecrev([-1,1])),Pol(Vecrev([0,0])),Pol(Vecrev([-166,-64])),Pol(Vecrev([1056,418]))], K);
magma: E := EllipticCurve([K![0,0],K![-1,1],K![0,0],K![-166,-64],K![1056,418]]);
This is a global minimal model.
sage: E.is_global_minimal_model()
Invariants
Conductor: | \(\left(4\right)\) | = | \(\left(-a + 2\right)^{4}\) |
sage: E.conductor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
| |||
Conductor norm: | \( 16 \) | = | \(2^{4}\) |
sage: E.conductor().norm()
gp: idealnorm(ellglobalred(E)[1])
magma: Norm(Conductor(E));
| |||
Discriminant: | \(( 64 )\) | = | \(\left(-a + 2\right)^{12}\) |
sage: E.discriminant()
gp: E.disc
magma: Discriminant(E);
| |||
Discriminant norm: | \( 4096 \) | = | \(2^{12}\) |
sage: E.discriminant().norm()
gp: norm(E.disc)
magma: Norm(Discriminant(E));
| |||
j-invariant: | \( -77092288000 a + 188837384000 \) | ||
sage: E.j_invariant()
gp: E.j
magma: jInvariant(E);
| |||
Endomorphism ring: | \(\Z\) | ||
Geometric endomorphism ring: | \(\Z[\sqrt{-18}]\) | (potential complex multiplication) | |
sage: E.has_cm(), E.cm_discriminant()
magma: HasComplexMultiplication(E);
| |||
Sato-Tate group: | $N(\mathrm{U}(1))$ |
Mordell-Weil group
Rank: | \(0\) |
Torsion structure: | \(\Z/2\Z\) |
sage: T = E.torsion_subgroup(); T.invariants()
gp: T = elltors(E); T[2]
magma: T,piT := TorsionSubgroup(E); Invariants(T);
| |
Torsion generator: | $\left(-5 a - 9 : 0 : 1\right)$ |
sage: T.gens()
gp: T[3]
magma: [piT(P) : P in Generators(T)];
|
BSD invariants
Analytic rank: | \( 0 \) | ||
sage: E.rank()
magma: Rank(E);
|
|||
Mordell-Weil rank: | \(0\) | ||
Regulator: | \( 1 \) | ||
Period: | \( 25.3799738685968 \) | ||
Tamagawa product: | \( 1 \) | ||
Torsion order: | \(2\) | ||
Leading coefficient: | \( 1.29516636798402 \) | ||
Analytic order of Ш: | \( 1 \) (rounded) |
Local data at primes of bad reduction
sage: E.local_data()
magma: LocalInformation(E);
prime | Norm | Tamagawa number | Kodaira symbol | Reduction type | Root number | ord(\(\mathfrak{N}\)) | ord(\(\mathfrak{D}\)) | ord\((j)_{-}\) |
---|---|---|---|---|---|---|---|---|
\(\left(-a + 2\right)\) | \(2\) | \(1\) | \(II^*\) | Additive | \(1\) | \(4\) | \(12\) | \(0\) |
Galois Representations
The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) .
The image is a Borel subgroup if \(p\in \{ 2, 3\}\), the normalizer of a split Cartan subgroup if \(\left(\frac{ -2 }{p}\right)=+1\) or the normalizer of a nonsplit Cartan subgroup if \(\left(\frac{ -2 }{p}\right)=-1\).
Isogenies and isogeny class
This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\)
2, 3, 6, 9 and 18.
Its isogeny class
16.1-a
consists of curves linked by isogenies of
degrees dividing 18.
Base change
This curve is not the base change of an elliptic curve defined over \(\Q\). It is a \(\Q\)-curve.