Properties

Label 2.2.24.1-150.1-e6
Base field \(\Q(\sqrt{6}) \)
Conductor norm \( 150 \)
CM no
Base change yes
Q-curve yes
Torsion order \( 6 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{6}) \)

Generator \(a\), with minimal polynomial \( x^{2} - 6 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-6, 0, 1]))
 
gp: K = nfinit(Polrev([-6, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-6, 0, 1]);
 

Weierstrass equation

\({y}^2+{x}{y}+{y}={x}^{3}-69{x}-194\)
sage: E = EllipticCurve([K([1,0]),K([0,0]),K([1,0]),K([-69,0]),K([-194,0])])
 
gp: E = ellinit([Polrev([1,0]),Polrev([0,0]),Polrev([1,0]),Polrev([-69,0]),Polrev([-194,0])], K);
 
magma: E := EllipticCurve([K![1,0],K![0,0],K![1,0],K![-69,0],K![-194,0]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Mordell-Weil group structure

\(\Z \oplus \Z/{6}\Z\)

Mordell-Weil generators

$P$$\hat{h}(P)$Order
$\left(-\frac{27}{2} a + \frac{55}{2} : \frac{405}{4} a - \frac{501}{2} : 1\right)$$1.2541864243010801008011292994842414460$$\infty$
$\left(-4 : 6 : 1\right)$$0$$6$

Invariants

Conductor: $\frak{N}$ = \((-5a)\) = \((-a+2)\cdot(a+3)\cdot(-a-1)\cdot(-a+1)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: $N(\frak{N})$ = \( 150 \) = \(2\cdot3\cdot5\cdot5\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: $\Delta$ = $5314410$
Discriminant ideal: $\frak{D}_{\mathrm{min}} = (\Delta)$ = \((5314410)\) = \((-a+2)^{2}\cdot(a+3)^{24}\cdot(-a-1)\cdot(-a+1)\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: $N(\frak{D}_{\mathrm{min}}) = N(\Delta)$ = \( 28242953648100 \) = \(2^{2}\cdot3^{24}\cdot5\cdot5\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: $j$ = \( \frac{35578826569}{5314410} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: $\mathrm{End}(E)$ = \(\Z\)   
Geometric endomorphism ring: $\mathrm{End}(E_{\overline{\Q}})$ = \(\Z\)    (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{ST}(E)$ = $\mathrm{SU}(2)$

BSD invariants

Analytic rank: $r_{\mathrm{an}}$= \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: $r$ = \(1\)
Regulator: $\mathrm{Reg}(E/K)$ \( 1.2541864243010801008011292994842414460 \)
Néron-Tate Regulator: $\mathrm{Reg}_{\mathrm{NT}}(E/K)$ \( 2.5083728486021602016022585989684828920 \)
Global period: $\Omega(E/K)$ \( 2.8088892831580245719059150358786380324 \)
Tamagawa product: $\prod_{\frak{p}}c_{\frak{p}}$= \( 48 \)  =  \(2\cdot( 2^{3} \cdot 3 )\cdot1\cdot1\)
Torsion order: $\#E(K)_{\mathrm{tor}}$= \(6\)
Special value: $L^{(r)}(E/K,1)/r!$ \( 1.9176079789302314243564354135619484477 \)
Analytic order of Ш: Ш${}_{\mathrm{an}}$= \( 1 \) (rounded)

BSD formula

$\displaystyle 1.917607979 \approx L'(E/K,1) \overset{?}{=} \frac{ \# Ш(E/K) \cdot \Omega(E/K) \cdot \mathrm{Reg}_{\mathrm{NT}}(E/K) \cdot \prod_{\mathfrak{p}} c_{\mathfrak{p}} } { \#E(K)_{\mathrm{tor}}^2 \cdot \left|d_K\right|^{1/2} } \approx \frac{ 1 \cdot 2.808889 \cdot 2.508373 \cdot 48 } { {6^2 \cdot 4.898979} } \approx 1.917607979$

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 

This elliptic curve is semistable. There are 4 primes $\frak{p}$ of bad reduction.

$\mathfrak{p}$ $N(\mathfrak{p})$ Tamagawa number Kodaira symbol Reduction type Root number \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{N}\)) \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{D}_{\mathrm{min}}\)) \(\mathrm{ord}_{\mathfrak{p}}(\mathrm{den}(j))\)
\((-a+2)\) \(2\) \(2\) \(I_{2}\) Non-split multiplicative \(1\) \(1\) \(2\) \(2\)
\((a+3)\) \(3\) \(24\) \(I_{24}\) Split multiplicative \(-1\) \(1\) \(24\) \(24\)
\((-a-1)\) \(5\) \(1\) \(I_{1}\) Non-split multiplicative \(1\) \(1\) \(1\) \(1\)
\((-a+1)\) \(5\) \(1\) \(I_{1}\) Non-split multiplicative \(1\) \(1\) \(1\) \(1\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(3\) 3B.1.1

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 3, 4, 6, 8, 12 and 24.
Its isogeny class 150.1-e consists of curves linked by isogenies of degrees dividing 24.

Base change

This elliptic curve is a \(\Q\)-curve. It is the base change of the following 2 elliptic curves:

Base field Curve
\(\Q\) 30.a5
\(\Q\) 2880.q5