# Properties

 Base field $$\Q(\sqrt{6})$$ Label 2.2.24.1-147.1-g3 Conductor $$(7 a + 21)$$ Conductor norm $$147$$ CM no base-change yes: 21.a5,4032.k5 Q-curve yes Torsion order $$8$$ Rank not available

# Related objects

Show commands for: Magma / Pari/GP / SageMath

## Base field $$\Q(\sqrt{6})$$

Generator $$a$$, with minimal polynomial $$x^{2} - 6$$; class number $$1$$.

sage: x = polygen(QQ); K.<a> = NumberField(x^2 - 6)

gp: K = nfinit(a^2 - 6);

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-6, 0, 1]);

## Weierstrass equation

$$y^2 + x y = x^{3} - 4 x - 1$$
sage: E = EllipticCurve(K, [1, 0, 0, -4, -1])

gp: E = ellinit([1, 0, 0, -4, -1],K)

magma: E := ChangeRing(EllipticCurve([1, 0, 0, -4, -1]),K);

This is a global minimal model.

sage: E.is_global_minimal_model()

## Invariants

 $$\mathfrak{N}$$ = $$(7 a + 21)$$ = $$\left(a + 3\right) \cdot \left(7\right)$$ sage: E.conductor()  magma: Conductor(E); $$N(\mathfrak{N})$$ = $$147$$ = $$3 \cdot 49$$ sage: E.conductor().norm()  magma: Norm(Conductor(E)); $$\mathfrak{D}$$ = $$(3969)$$ = $$\left(a + 3\right)^{8} \cdot \left(7\right)^{2}$$ sage: E.discriminant()  gp: E.disc  magma: Discriminant(E); $$N(\mathfrak{D})$$ = $$15752961$$ = $$3^{8} \cdot 49^{2}$$ sage: E.discriminant().norm()  gp: norm(E.disc)  magma: Norm(Discriminant(E)); $$j$$ = $$\frac{7189057}{3969}$$ sage: E.j_invariant()  gp: E.j  magma: jInvariant(E); $$\text{End} (E)$$ = $$\Z$$ (no Complex Multiplication ) sage: E.has_cm(), E.cm_discriminant()  magma: HasComplexMultiplication(E); $$\text{ST} (E)$$ = $\mathrm{SU}(2)$

## Mordell-Weil group

Rank not available.

sage: E.rank()

magma: Rank(E);

Regulator: not available

sage: gens = E.gens(); gens

magma: gens := [P:P in Generators(E)|Order(P) eq 0]; gens;

sage: E.regulator_of_points(gens)

magma: Regulator(gens);

## Torsion subgroup

Structure: $$\Z/2\Z\times\Z/4\Z$$ sage: T = E.torsion_subgroup(); T.invariants()  gp: T = elltors(E); T[2]  magma: T,piT := TorsionSubgroup(E); Invariants(T); $\left(-1 : -1 : 1\right)$,$\left(-\frac{1}{4} : \frac{1}{8} : 1\right)$ sage: T.gens()  gp: T[3]  magma: [piT(P) : P in Generators(T)];

## Local data at primes of bad reduction

sage: E.local_data()

magma: LocalInformation(E);

prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord($$\mathfrak{N}$$) ord($$\mathfrak{D}$$) ord$$(j)_{-}$$
$$\left(a + 3\right)$$ $$3$$ $$8$$ $$I_{8}$$ Split multiplicative $$-1$$ $$1$$ $$8$$ $$8$$
$$\left(7\right)$$ $$49$$ $$2$$ $$I_{2}$$ Split multiplicative $$-1$$ $$1$$ $$2$$ $$2$$

## Galois Representations

The mod $$p$$ Galois Representation has maximal image for all primes $$p < 1000$$ except those listed.

prime Image of Galois Representation
$$2$$ 2Cs

## Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree $$d$$ for $$d=$$ 2 and 4.
Its isogeny class 147.1-g consists of curves linked by isogenies of degrees dividing 8.

## Base change

This curve is the base-change of elliptic curves 21.a5, 4032.k5, defined over $$\Q$$, so it is also a $$\Q$$-curve.