Properties

Label 2.2.229.1-9.2-a4
Base field \(\Q(\sqrt{229}) \)
Conductor norm \( 9 \)
CM no
Base change no
Q-curve yes
Torsion order \( 1 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{229}) \)

Generator \(a\), with minimal polynomial \( x^{2} - x - 57 \); class number \(3\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-57, -1, 1]))
 
gp: K = nfinit(Polrev([-57, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-57, -1, 1]);
 

Weierstrass equation

\({y}^2+a{x}{y}+a{y}={x}^{3}+a{x}^{2}+\left(33a-126\right){x}+144a-797\)
sage: E = EllipticCurve([K([0,1]),K([0,1]),K([0,1]),K([-126,33]),K([-797,144])])
 
gp: E = ellinit([Polrev([0,1]),Polrev([0,1]),Polrev([0,1]),Polrev([-126,33]),Polrev([-797,144])], K);
 
magma: E := EllipticCurve([K![0,1],K![0,1],K![0,1],K![-126,33],K![-797,144]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((9,a+3)\) = \((3,a)^{2}\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 9 \) = \(3^{2}\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((5a+24)\) = \((3,a)^{6}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 729 \) = \(3^{6}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( 299510191348095 a + 2116450721944642 \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(\frac{43}{225} a - \frac{509}{75} : \frac{3386}{3375} a + \frac{10157}{1125} : 1\right)$
Height \(1.7171579751111212954115423118175004123\)
Torsion structure: trivial
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 1.7171579751111212954115423118175004123 \)
Period: \( 14.200682020408360051969867184967067623 \)
Tamagawa product: \( 1 \)
Torsion order: \(1\)
Leading coefficient: \( 3.2227877826339949565889867258518772554 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((3,a)\) \(3\) \(1\) \(I_0^{*}\) Additive \(-1\) \(2\) \(6\) \(0\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2Cn
\(3\) 3B
\(5\) 5B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 3, 5 and 15.
Its isogeny class 9.2-a consists of curves linked by isogenies of degrees dividing 15.

Base change

This elliptic curve is a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.