Properties

Label 2.2.21.1-75.1-b6
Base field \(\Q(\sqrt{21}) \)
Conductor norm \( 75 \)
CM no
Base change yes
Q-curve yes
Torsion order \( 4 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{21}) \)

Generator \(a\), with minimal polynomial \( x^{2} - x - 5 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-5, -1, 1]))
 
gp: K = nfinit(Polrev([-5, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-5, -1, 1]);
 

Weierstrass equation

\({y}^2+a{x}{y}+{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(677a-1886\right){x}-14484a+40430\)
sage: E = EllipticCurve([K([0,1]),K([1,1]),K([1,0]),K([-1886,677]),K([40430,-14484])])
 
gp: E = ellinit([Polrev([0,1]),Polrev([1,1]),Polrev([1,0]),Polrev([-1886,677]),Polrev([40430,-14484])], K);
 
magma: E := EllipticCurve([K![0,1],K![1,1],K![1,0],K![-1886,677],K![40430,-14484]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Mordell-Weil group structure

\(\Z \oplus \Z/{2}\Z \oplus \Z/{2}\Z\)

Mordell-Weil generators

$P$$\hat{h}(P)$Order
$\left(-8 a + 19 : -7 a + 27 : 1\right)$$0.086147259603011144414184286067849206902$$\infty$
$\left(13 a - 41 : 14 a - 33 : 1\right)$$0$$2$
$\left(-7 a + 19 : -6 a + 17 : 1\right)$$0$$2$

Invariants

Conductor: $\frak{N}$ = \((-5a+10)\) = \((-a+2)\cdot(-a)\cdot(-a+1)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: $N(\frak{N})$ = \( 75 \) = \(3\cdot5\cdot5\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: $\Delta$ = $164025$
Discriminant ideal: $\frak{D}_{\mathrm{min}} = (\Delta)$ = \((164025)\) = \((-a+2)^{16}\cdot(-a)^{2}\cdot(-a+1)^{2}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: $N(\frak{D}_{\mathrm{min}}) = N(\Delta)$ = \( 26904200625 \) = \(3^{16}\cdot5^{2}\cdot5^{2}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: $j$ = \( \frac{272223782641}{164025} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: $\mathrm{End}(E)$ = \(\Z\)   
Geometric endomorphism ring: $\mathrm{End}(E_{\overline{\Q}})$ = \(\Z\)    (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{ST}(E)$ = $\mathrm{SU}(2)$

BSD invariants

Analytic rank: $r_{\mathrm{an}}$= \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: $r$ = \(1\)
Regulator: $\mathrm{Reg}(E/K)$ \( 0.086147259603011144414184286067849206902 \)
Néron-Tate Regulator: $\mathrm{Reg}_{\mathrm{NT}}(E/K)$ \( 0.1722945192060222888283685721356984138040 \)
Global period: $\Omega(E/K)$ \( 10.191956926864856360574667107766048810 \)
Tamagawa product: $\prod_{\frak{p}}c_{\frak{p}}$= \( 64 \)  =  \(2^{4}\cdot2\cdot2\)
Torsion order: $\#E(K)_{\mathrm{tor}}$= \(4\)
Special value: $L^{(r)}(E/K,1)/r!$ \( 1.5327784507001718123793014338966505204 \)
Analytic order of Ш: Ш${}_{\mathrm{an}}$= \( 1 \) (rounded)

BSD formula

$\displaystyle 1.532778451 \approx L'(E/K,1) \overset{?}{=} \frac{ \# Ш(E/K) \cdot \Omega(E/K) \cdot \mathrm{Reg}_{\mathrm{NT}}(E/K) \cdot \prod_{\mathfrak{p}} c_{\mathfrak{p}} } { \#E(K)_{\mathrm{tor}}^2 \cdot \left|d_K\right|^{1/2} } \approx \frac{ 1 \cdot 10.191957 \cdot 0.172295 \cdot 64 } { {4^2 \cdot 4.582576} } \approx 1.532778451$

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 

This elliptic curve is semistable. There are 3 primes $\frak{p}$ of bad reduction.

$\mathfrak{p}$ $N(\mathfrak{p})$ Tamagawa number Kodaira symbol Reduction type Root number \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{N}\)) \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{D}_{\mathrm{min}}\)) \(\mathrm{ord}_{\mathfrak{p}}(\mathrm{den}(j))\)
\((-a+2)\) \(3\) \(16\) \(I_{16}\) Split multiplicative \(-1\) \(1\) \(16\) \(16\)
\((-a)\) \(5\) \(2\) \(I_{2}\) Non-split multiplicative \(1\) \(1\) \(2\) \(2\)
\((-a+1)\) \(5\) \(2\) \(I_{2}\) Non-split multiplicative \(1\) \(1\) \(2\) \(2\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2Cs

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 4 and 8.
Its isogeny class 75.1-b consists of curves linked by isogenies of degrees dividing 16.

Base change

This elliptic curve is a \(\Q\)-curve. It is the base change of the following 2 elliptic curves:

Base field Curve
\(\Q\) 45.a2
\(\Q\) 735.c2