Properties

Label 2.2.21.1-525.1-e3
Base field \(\Q(\sqrt{21}) \)
Conductor norm \( 525 \)
CM no
Base change yes
Q-curve yes
Torsion order \( 4 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{21}) \)

Generator \(a\), with minimal polynomial \( x^{2} - x - 5 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-5, -1, 1]))
 
gp: K = nfinit(Polrev([-5, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-5, -1, 1]);
 

Weierstrass equation

\({y}^2+a{x}{y}+\left(a+1\right){y}={x}^{3}+{x}^{2}+\left(37a-106\right){x}-125a+346\)
sage: E = EllipticCurve([K([0,1]),K([1,0]),K([1,1]),K([-106,37]),K([346,-125])])
 
gp: E = ellinit([Polrev([0,1]),Polrev([1,0]),Polrev([1,1]),Polrev([-106,37]),Polrev([346,-125])], K);
 
magma: E := EllipticCurve([K![0,1],K![1,0],K![1,1],K![-106,37],K![346,-125]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-10a+5)\) = \((-a+2)\cdot(-a)\cdot(-a+1)\cdot(a+3)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 525 \) = \(3\cdot5\cdot5\cdot7\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((11025)\) = \((-a+2)^{4}\cdot(-a)^{2}\cdot(-a+1)^{2}\cdot(a+3)^{4}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 121550625 \) = \(3^{4}\cdot5^{2}\cdot5^{2}\cdot7^{4}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{47045881}{11025} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(-3 a + 7 : -8 a + 22 : 1\right)$
Height \(0.12970750570378719191351383022472742142\)
Torsion structure: \(\Z/2\Z\oplus\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generators: $\left(3 a - 10 : 3 a - 8 : 1\right)$ $\left(-a + 2 : -a + 2 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.12970750570378719191351383022472742142 \)
Period: \( 14.462347805088135009172894221418845783 \)
Tamagawa product: \( 32 \)  =  \(2\cdot2\cdot2\cdot2^{2}\)
Torsion order: \(4\)
Leading coefficient: \( 1.6373979921234669914153998671011183227 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-a+2)\) \(3\) \(2\) \(I_{4}\) Non-split multiplicative \(1\) \(1\) \(4\) \(4\)
\((-a)\) \(5\) \(2\) \(I_{2}\) Non-split multiplicative \(1\) \(1\) \(2\) \(2\)
\((-a+1)\) \(5\) \(2\) \(I_{2}\) Non-split multiplicative \(1\) \(1\) \(2\) \(2\)
\((a+3)\) \(7\) \(4\) \(I_{4}\) Split multiplicative \(-1\) \(1\) \(4\) \(4\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2Cs

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2 and 4.
Its isogeny class 525.1-e consists of curves linked by isogenies of degrees dividing 8.

Base change

This elliptic curve is a \(\Q\)-curve. It is the base change of the following 2 elliptic curves:

Base field Curve
\(\Q\) 315.a2
\(\Q\) 735.f2