# Properties

 Base field $$\Q(\sqrt{21})$$ Label 2.2.21.1-28.1-a1 Conductor $$(2 a + 6)$$ Conductor norm $$28$$ CM no base-change yes: 98.a2,126.b2 Q-curve yes Torsion order $$6$$ Rank not available

# Related objects

Show commands for: Magma / Pari/GP / SageMath

## Base field $$\Q(\sqrt{21})$$

Generator $$a$$, with minimal polynomial $$x^{2} - x - 5$$; class number $$1$$.

sage: x = polygen(QQ); K.<a> = NumberField(x^2 - x - 5)

gp: K = nfinit(a^2 - a - 5);

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-5, -1, 1]);

## Weierstrass equation

$$y^2 + a x y + \left(a + 1\right) y = x^{3} + x^{2} + \left(852 a - 2388\right) x - 20118 a + 56153$$
sage: E = EllipticCurve(K, [a, 1, a + 1, 852*a - 2388, -20118*a + 56153])

gp: E = ellinit([a, 1, a + 1, 852*a - 2388, -20118*a + 56153],K)

magma: E := ChangeRing(EllipticCurve([a, 1, a + 1, 852*a - 2388, -20118*a + 56153]),K);

This is a global minimal model.

sage: E.is_global_minimal_model()

## Invariants

 $$\mathfrak{N}$$ = $$(2 a + 6)$$ = $$\left(2\right) \cdot \left(a + 3\right)$$ sage: E.conductor()  magma: Conductor(E); $$N(\mathfrak{N})$$ = $$28$$ = $$4 \cdot 7$$ sage: E.conductor().norm()  magma: Norm(Conductor(E)); $$\mathfrak{D}$$ = $$(1835008)$$ = $$\left(2\right)^{18} \cdot \left(a + 3\right)^{2}$$ sage: E.discriminant()  gp: E.disc  magma: Discriminant(E); $$N(\mathfrak{D})$$ = $$3367254360064$$ = $$4^{18} \cdot 7^{2}$$ sage: E.discriminant().norm()  gp: norm(E.disc)  magma: Norm(Discriminant(E)); $$j$$ = $$-\frac{548347731625}{1835008}$$ sage: E.j_invariant()  gp: E.j  magma: jInvariant(E); $$\text{End} (E)$$ = $$\Z$$ (no Complex Multiplication ) sage: E.has_cm(), E.cm_discriminant()  magma: HasComplexMultiplication(E); $$\text{ST} (E)$$ = $\mathrm{SU}(2)$

## Mordell-Weil group

Rank not available.

sage: E.rank()

magma: Rank(E);

Regulator: not available

sage: gens = E.gens(); gens

magma: gens := [P:P in Generators(E)|Order(P) eq 0]; gens;

sage: E.regulator_of_points(gens)

magma: Regulator(gens);

## Torsion subgroup

Structure: $$\Z/6\Z$$ sage: T = E.torsion_subgroup(); T.invariants()  gp: T = elltors(E); T[2]  magma: T,piT := TorsionSubgroup(E); Invariants(T); $\left(-9 a + 26 : 7 a - 22 : 1\right)$ sage: T.gens()  gp: T[3]  magma: [piT(P) : P in Generators(T)];

## Local data at primes of bad reduction

sage: E.local_data()

magma: LocalInformation(E);

prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord($$\mathfrak{N}$$) ord($$\mathfrak{D}$$) ord$$(j)_{-}$$
$$\left(a + 3\right)$$ $$7$$ $$2$$ $$I_{2}$$ Split multiplicative $$-1$$ $$1$$ $$2$$ $$2$$
$$\left(2\right)$$ $$4$$ $$18$$ $$I_{18}$$ Split multiplicative $$-1$$ $$1$$ $$18$$ $$18$$

## Galois Representations

The mod $$p$$ Galois Representation has maximal image for all primes $$p < 1000$$ except those listed.

prime Image of Galois Representation
$$2$$ 2B
$$3$$ 3B.1.1

## Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree $$d$$ for $$d=$$ 2, 3, 6, 9 and 18.
Its isogeny class 28.1-a consists of curves linked by isogenies of degrees dividing 18.

## Base change

This curve is the base-change of elliptic curves 98.a2, 126.b2, defined over $$\Q$$, so it is also a $$\Q$$-curve.