Properties

Base field \(\Q(\sqrt{21}) \)
Label 2.2.21.1-2100.1-v
Conductor 2100.1
Rank \( 0 \)

Related objects

Learn more

Base field \(\Q(\sqrt{21}) \)

Generator \(a\), with minimal polynomial \( x^{2} - x - 5 \); class number \(1\).

Elliptic curves in class 2100.1-v over \(\Q(\sqrt{21}) \)

Isogeny class 2100.1-v contains 8 curves linked by isogenies of degrees dividing 16.

Curve label Weierstrass Coefficients
2100.1-v1 \( \bigl[1\) , \( 0\) , \( 0\) , \( -119300\) , \( -16229850\bigr] \)
2100.1-v2 \( \bigl[1\) , \( 0\) , \( 0\) , \( 1270\) , \( -789048\bigr] \)
2100.1-v3 \( \bigl[1\) , \( 0\) , \( 0\) , \( 210\) , \( 900\bigr] \)
2100.1-v4 \( \bigl[1\) , \( 0\) , \( 0\) , \( -1070\) , \( 7812\bigr] \)
2100.1-v5 \( \bigl[1\) , \( 0\) , \( 0\) , \( -7550\) , \( -247500\bigr] \)
2100.1-v6 \( \bigl[1\) , \( 0\) , \( 0\) , \( -15070\) , \( 710612\bigr] \)
2100.1-v7 \( \bigl[1\) , \( 0\) , \( 0\) , \( -120050\) , \( -16020000\bigr] \)
2100.1-v8 \( \bigl[1\) , \( 0\) , \( 0\) , \( -1920800\) , \( -1024800150\bigr] \)

Rank

Rank: \( 0 \)

Isogeny matrix

\(\left(\begin{array}{rrrrrrrr} 1 & 8 & 16 & 8 & 4 & 16 & 2 & 4 \\ 8 & 1 & 8 & 4 & 2 & 8 & 4 & 8 \\ 16 & 8 & 1 & 2 & 4 & 4 & 8 & 16 \\ 8 & 4 & 2 & 1 & 2 & 2 & 4 & 8 \\ 4 & 2 & 4 & 2 & 1 & 4 & 2 & 4 \\ 16 & 8 & 4 & 2 & 4 & 1 & 8 & 16 \\ 2 & 4 & 8 & 4 & 2 & 8 & 1 & 2 \\ 4 & 8 & 16 & 8 & 4 & 16 & 2 & 1 \end{array}\right)\)

Isogeny graph