Properties

Label 2.2.21.1-1875.1-bp5
Base field \(\Q(\sqrt{21}) \)
Conductor norm \( 1875 \)
CM no
Base change no
Q-curve no
Torsion order \( 4 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{21}) \)

Generator \(a\), with minimal polynomial \( x^{2} - x - 5 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-5, -1, 1]))
 
gp: K = nfinit(Polrev([-5, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-5, -1, 1]);
 

Weierstrass equation

\({y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(1017a-2920\right){x}-4419a+12722\)
sage: E = EllipticCurve([K([1,0]),K([-1,-1]),K([1,1]),K([-2920,1017]),K([12722,-4419])])
 
gp: E = ellinit([Polrev([1,0]),Polrev([-1,-1]),Polrev([1,1]),Polrev([-2920,1017]),Polrev([12722,-4419])], K);
 
magma: E := EllipticCurve([K![1,0],K![-1,-1],K![1,1],K![-2920,1017],K![12722,-4419]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-25a+50)\) = \((-a+2)\cdot(-a)^{2}\cdot(-a+1)^{2}\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 1875 \) = \(3\cdot5^{2}\cdot5^{2}\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((2671875a+28593750)\) = \((-a+2)^{2}\cdot(-a)^{14}\cdot(-a+1)^{6}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 858306884765625 \) = \(3^{2}\cdot5^{14}\cdot5^{6}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{127041323975657}{1171875} a + \frac{75856556821286}{390625} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(-27 a + 83 : -269 a + 750 : 1\right)$
Height \(1.9403691568826929402401561268334550528\)
Torsion structure: \(\Z/2\Z\oplus\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generators: $\left(-3 a - 1 : a : 1\right)$ $\left(17 a - 41 : -9 a + 20 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 1.9403691568826929402401561268334550528 \)
Period: \( 3.2624652932261074262022232829307410497 \)
Tamagawa product: \( 32 \)  =  \(2\cdot2^{2}\cdot2^{2}\)
Torsion order: \(4\)
Leading coefficient: \( 5.5256148085839244990283307453406803183 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-a+2)\) \(3\) \(2\) \(I_{2}\) Split multiplicative \(-1\) \(1\) \(2\) \(2\)
\((-a)\) \(5\) \(4\) \(I_{8}^{*}\) Additive \(1\) \(2\) \(14\) \(8\)
\((-a+1)\) \(5\) \(4\) \(I_0^{*}\) Additive \(1\) \(2\) \(6\) \(0\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2Cs

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2 and 4.
Its isogeny class 1875.1-bp consists of curves linked by isogenies of degrees dividing 8.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.