Properties

Label 2.2.21.1-175.1-b2
Base field \(\Q(\sqrt{21}) \)
Conductor norm \( 175 \)
CM no
Base change yes
Q-curve yes
Torsion order \( 1 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{21}) \)

Generator \(a\), with minimal polynomial \( x^{2} - x - 5 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-5, -1, 1]))
 
gp: K = nfinit(Polrev([-5, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-5, -1, 1]);
 

Weierstrass equation

\({y}^2+{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-7a-10\right){x}-12a-21\)
sage: E = EllipticCurve([K([0,0]),K([1,-1]),K([1,0]),K([-10,-7]),K([-21,-12])])
 
gp: E = ellinit([Polrev([0,0]),Polrev([1,-1]),Polrev([1,0]),Polrev([-10,-7]),Polrev([-21,-12])], K);
 
magma: E := EllipticCurve([K![0,0],K![1,-1],K![1,0],K![-10,-7],K![-21,-12]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((5a+15)\) = \((-a)\cdot(-a+1)\cdot(a+3)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 175 \) = \(5\cdot5\cdot7\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-35)\) = \((-a)\cdot(-a+1)\cdot(a+3)^{2}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 1225 \) = \(5\cdot5\cdot7^{2}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{262144}{35} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(2 a + 3 : -3 a - 6 : 1\right)$
Height \(0.36737780216497338453285000149795958011\)
Torsion structure: trivial
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.36737780216497338453285000149795958011 \)
Period: \( 4.8622202595689165453532247611092932943 \)
Tamagawa product: \( 2 \)  =  \(1\cdot1\cdot2\)
Torsion order: \(1\)
Leading coefficient: \( 1.5591858478790699994852262559584919653 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-a)\) \(5\) \(1\) \(I_{1}\) Split multiplicative \(-1\) \(1\) \(1\) \(1\)
\((-a+1)\) \(5\) \(1\) \(I_{1}\) Split multiplicative \(-1\) \(1\) \(1\) \(1\)
\((a+3)\) \(7\) \(2\) \(I_{2}\) Split multiplicative \(-1\) \(1\) \(2\) \(2\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(3\) 3B.1.2

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 3 and 9.
Its isogeny class 175.1-b consists of curves linked by isogenies of degrees dividing 9.

Base change

This elliptic curve is a \(\Q\)-curve. It is the base change of the following 2 elliptic curves:

Base field Curve
\(\Q\) 245.c2
\(\Q\) 315.b2