Learn more

Refine search


Results (12 matches)

  Download displayed columns to          
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
147.1-a1 147.1-a \(\Q(\sqrt{21}) \) \( 3 \cdot 7^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $2.919140139$ 2.548034410 \( \frac{1381357}{441} a - \frac{1307989}{147} \) \( \bigl[1\) , \( a + 1\) , \( a + 1\) , \( 17 a - 46\) , \( 57 a - 159\bigr] \) ${y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}+\left(a+1\right){x}^{2}+\left(17a-46\right){x}+57a-159$
147.1-a2 147.1-a \(\Q(\sqrt{21}) \) \( 3 \cdot 7^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $2.919140139$ 2.548034410 \( -\frac{28686222041}{567} a + \frac{80304512846}{567} \) \( \bigl[1\) , \( a + 1\) , \( a + 1\) , \( 262 a - 781\) , \( 3683 a - 10204\bigr] \) ${y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}+\left(a+1\right){x}^{2}+\left(262a-781\right){x}+3683a-10204$
147.1-b1 147.1-b \(\Q(\sqrt{21}) \) \( 3 \cdot 7^{2} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $3.686606385$ 1.608966934 \( -\frac{1713910976512}{1594323} \) \( \bigl[0\) , \( -1\) , \( 1\) , \( -912\) , \( 10919\bigr] \) ${y}^2+{y}={x}^{3}-{x}^{2}-912{x}+10919$
147.1-b2 147.1-b \(\Q(\sqrt{21}) \) \( 3 \cdot 7^{2} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $3.686606385$ 1.608966934 \( -\frac{28672}{3} \) \( \bigl[0\) , \( -1\) , \( 1\) , \( -2\) , \( -1\bigr] \) ${y}^2+{y}={x}^{3}-{x}^{2}-2{x}-1$
147.1-c1 147.1-c \(\Q(\sqrt{21}) \) \( 3 \cdot 7^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $2.919140139$ 2.548034410 \( -\frac{1381357}{441} a - \frac{51890}{9} \) \( \bigl[1\) , \( -a - 1\) , \( a + 1\) , \( -16 a - 30\) , \( -42 a - 72\bigr] \) ${y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-16a-30\right){x}-42a-72$
147.1-c2 147.1-c \(\Q(\sqrt{21}) \) \( 3 \cdot 7^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $2.919140139$ 2.548034410 \( \frac{28686222041}{567} a + \frac{5735365645}{63} \) \( \bigl[1\) , \( -a - 1\) , \( a + 1\) , \( -261 a - 520\) , \( -3423 a - 6001\bigr] \) ${y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-261a-520\right){x}-3423a-6001$
147.1-d1 147.1-d \(\Q(\sqrt{21}) \) \( 3 \cdot 7^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.451058583$ $4.350866838$ 1.713006800 \( -\frac{1381357}{441} a - \frac{51890}{9} \) \( \bigl[a\) , \( a - 1\) , \( 1\) , \( 10 a - 28\) , \( 91 a - 254\bigr] \) ${y}^2+a{x}{y}+{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(10a-28\right){x}+91a-254$
147.1-d2 147.1-d \(\Q(\sqrt{21}) \) \( 3 \cdot 7^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.902117166$ $4.350866838$ 1.713006800 \( \frac{28686222041}{567} a + \frac{5735365645}{63} \) \( \bigl[a\) , \( a - 1\) , \( 1\) , \( 255 a - 763\) , \( 3423 a - 9466\bigr] \) ${y}^2+a{x}{y}+{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(255a-763\right){x}+3423a-9466$
147.1-e1 147.1-e \(\Q(\sqrt{21}) \) \( 3 \cdot 7^{2} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.991510447$ $0.188631360$ 2.122290778 \( -\frac{1713910976512}{1594323} \) \( \bigl[0\) , \( -a\) , \( 1\) , \( 4562 a - 12771\) , \( 257501 a - 718820\bigr] \) ${y}^2+{y}={x}^{3}-a{x}^{2}+\left(4562a-12771\right){x}+257501a-718820$
147.1-e2 147.1-e \(\Q(\sqrt{21}) \) \( 3 \cdot 7^{2} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.076270034$ $31.87869985$ 2.122290778 \( -\frac{28672}{3} \) \( \bigl[0\) , \( -a\) , \( 1\) , \( 12 a - 31\) , \( -29 a + 80\bigr] \) ${y}^2+{y}={x}^{3}-a{x}^{2}+\left(12a-31\right){x}-29a+80$
147.1-f1 147.1-f \(\Q(\sqrt{21}) \) \( 3 \cdot 7^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.451058583$ $4.350866838$ 1.713006800 \( \frac{1381357}{441} a - \frac{1307989}{147} \) \( \bigl[a + 1\) , \( a\) , \( 0\) , \( -7 a - 15\) , \( -119 a - 209\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+a{x}^{2}+\left(-7a-15\right){x}-119a-209$
147.1-f2 147.1-f \(\Q(\sqrt{21}) \) \( 3 \cdot 7^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.902117166$ $4.350866838$ 1.713006800 \( -\frac{28686222041}{567} a + \frac{80304512846}{567} \) \( \bigl[a + 1\) , \( a\) , \( 0\) , \( -252 a - 505\) , \( -4186 a - 7314\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+a{x}^{2}+\left(-252a-505\right){x}-4186a-7314$
  Download displayed columns to          

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.