Learn more

Refine search


Results (22 matches)

  Download to          
Label Class Base field Conductor norm Rank Torsion CM Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
1225.1-a1 1225.1-a \(\Q(\sqrt{21}) \) \( 5^{2} \cdot 7^{2} \) $0$ $\mathsf{trivial}$ $1$ $8.640496728$ 5.656532900 \( -\frac{9441441}{125} a - \frac{16862229}{125} \) \( \bigl[a\) , \( a\) , \( a + 1\) , \( -41 a - 72\) , \( 153 a + 275\bigr] \) ${y}^2+a{x}{y}+\left(a+1\right){y}={x}^{3}+a{x}^{2}+\left(-41a-72\right){x}+153a+275$
1225.1-a2 1225.1-a \(\Q(\sqrt{21}) \) \( 5^{2} \cdot 7^{2} \) $0$ $\mathsf{trivial}$ $1$ $8.640496728$ 5.656532900 \( \frac{9441441}{125} a - \frac{5260734}{25} \) \( \bigl[a + 1\) , \( a + 1\) , \( a + 1\) , \( 44 a - 110\) , \( -223 a + 640\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(a+1\right){x}^{2}+\left(44a-110\right){x}-223a+640$
1225.1-b1 1225.1-b \(\Q(\sqrt{21}) \) \( 5^{2} \cdot 7^{2} \) $1$ $\mathsf{trivial}$ $0.545174856$ $4.882829994$ 4.647161457 \( -\frac{4882432}{625} a - \frac{8081408}{625} \) \( \bigl[0\) , \( -a + 1\) , \( 1\) , \( -2 a + 4\) , \( -2 a + 5\bigr] \) ${y}^2+{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-2a+4\right){x}-2a+5$
1225.1-c1 1225.1-c \(\Q(\sqrt{21}) \) \( 5^{2} \cdot 7^{2} \) $1$ $\mathsf{trivial}$ $3.273334507$ $1.975948723$ 5.645681880 \( -\frac{110592}{125} \) \( \bigl[0\) , \( 0\) , \( 1\) , \( 35 a - 98\) , \( 294 a - 821\bigr] \) ${y}^2+{y}={x}^{3}+\left(35a-98\right){x}+294a-821$
1225.1-d1 1225.1-d \(\Q(\sqrt{21}) \) \( 5^{2} \cdot 7^{2} \) $1$ $\mathsf{trivial}$ $0.545174856$ $4.882829994$ 4.647161457 \( \frac{4882432}{625} a - \frac{2592768}{125} \) \( \bigl[0\) , \( a\) , \( 1\) , \( 2 a + 2\) , \( 2 a + 3\bigr] \) ${y}^2+{y}={x}^{3}+a{x}^{2}+\left(2a+2\right){x}+2a+3$
1225.1-e1 1225.1-e \(\Q(\sqrt{21}) \) \( 5^{2} \cdot 7^{2} \) $1$ $\mathsf{trivial}$ $1.232696358$ $0.909163111$ 4.891232056 \( \frac{801142366208}{153125} a - \frac{447243538432}{30625} \) \( \bigl[0\) , \( 1\) , \( 1\) , \( 35 a - 65\) , \( 357 a + 39\bigr] \) ${y}^2+{y}={x}^{3}+{x}^{2}+\left(35a-65\right){x}+357a+39$
1225.1-f1 1225.1-f \(\Q(\sqrt{21}) \) \( 5^{2} \cdot 7^{2} \) $0$ $\Z/2\Z$ $1$ $1.003875494$ 2.628763109 \( -\frac{394236075318246}{244140625} a + \frac{1100615371055451}{244140625} \) \( \bigl[a + 1\) , \( 0\) , \( a + 1\) , \( 860 a - 2373\) , \( 20626 a - 57467\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(860a-2373\right){x}+20626a-57467$
1225.1-f2 1225.1-f \(\Q(\sqrt{21}) \) \( 5^{2} \cdot 7^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $4.015501978$ 2.628763109 \( \frac{55306341}{15625} \) \( \bigl[a + 1\) , \( 0\) , \( a + 1\) , \( 55 a - 168\) , \( 263 a - 739\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(55a-168\right){x}+263a-739$
1225.1-f3 1225.1-f \(\Q(\sqrt{21}) \) \( 5^{2} \cdot 7^{2} \) $0$ $\Z/2\Z$ $1$ $8.031003956$ 2.628763109 \( \frac{2803221}{125} \) \( \bigl[a + 1\) , \( 0\) , \( a + 1\) , \( 20 a - 63\) , \( -80 a + 213\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(20a-63\right){x}-80a+213$
1225.1-f4 1225.1-f \(\Q(\sqrt{21}) \) \( 5^{2} \cdot 7^{2} \) $0$ $\Z/2\Z$ $1$ $2.007750989$ 2.628763109 \( \frac{394236075318246}{244140625} a + \frac{141275859147441}{48828125} \) \( \bigl[a + 1\) , \( 0\) , \( a + 1\) , \( -190 a + 357\) , \( 1852 a - 4519\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(-190a+357\right){x}+1852a-4519$
1225.1-g1 1225.1-g \(\Q(\sqrt{21}) \) \( 5^{2} \cdot 7^{2} \) $1$ $\mathsf{trivial}$ $0.928724086$ $3.030510673$ 2.456704215 \( -\frac{801142366208}{153125} a - \frac{1435075325952}{153125} \) \( \bigl[0\) , \( a\) , \( 1\) , \( -163 a + 452\) , \( 24697 a - 68936\bigr] \) ${y}^2+{y}={x}^{3}+a{x}^{2}+\left(-163a+452\right){x}+24697a-68936$
1225.1-h1 1225.1-h \(\Q(\sqrt{21}) \) \( 5^{2} \cdot 7^{2} \) $1$ $\mathsf{trivial}$ $1.232696358$ $0.909163111$ 4.891232056 \( -\frac{801142366208}{153125} a - \frac{1435075325952}{153125} \) \( \bigl[0\) , \( 1\) , \( 1\) , \( -35 a - 30\) , \( -357 a + 396\bigr] \) ${y}^2+{y}={x}^{3}+{x}^{2}+\left(-35a-30\right){x}-357a+396$
1225.1-i1 1225.1-i \(\Q(\sqrt{21}) \) \( 5^{2} \cdot 7^{2} \) $0$ $\Z/2\Z$ $1$ $2.007750989$ 2.628763109 \( -\frac{394236075318246}{244140625} a + \frac{1100615371055451}{244140625} \) \( \bigl[a\) , \( -a + 1\) , \( a\) , \( 188 a + 169\) , \( -1853 a - 2666\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(188a+169\right){x}-1853a-2666$
1225.1-i2 1225.1-i \(\Q(\sqrt{21}) \) \( 5^{2} \cdot 7^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $4.015501978$ 2.628763109 \( \frac{55306341}{15625} \) \( \bigl[a\) , \( -a + 1\) , \( a\) , \( -57 a - 111\) , \( -264 a - 475\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-57a-111\right){x}-264a-475$
1225.1-i3 1225.1-i \(\Q(\sqrt{21}) \) \( 5^{2} \cdot 7^{2} \) $0$ $\Z/2\Z$ $1$ $8.031003956$ 2.628763109 \( \frac{2803221}{125} \) \( \bigl[a\) , \( -a + 1\) , \( a\) , \( -22 a - 41\) , \( 79 a + 134\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-22a-41\right){x}+79a+134$
1225.1-i4 1225.1-i \(\Q(\sqrt{21}) \) \( 5^{2} \cdot 7^{2} \) $0$ $\Z/2\Z$ $1$ $1.003875494$ 2.628763109 \( \frac{394236075318246}{244140625} a + \frac{141275859147441}{48828125} \) \( \bigl[a\) , \( -a + 1\) , \( a\) , \( -862 a - 1511\) , \( -20627 a - 36840\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-862a-1511\right){x}-20627a-36840$
1225.1-j1 1225.1-j \(\Q(\sqrt{21}) \) \( 5^{2} \cdot 7^{2} \) $1$ $\mathsf{trivial}$ $0.928724086$ $3.030510673$ 2.456704215 \( \frac{801142366208}{153125} a - \frac{447243538432}{30625} \) \( \bigl[0\) , \( -a + 1\) , \( 1\) , \( 163 a + 289\) , \( -24697 a - 44239\bigr] \) ${y}^2+{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(163a+289\right){x}-24697a-44239$
1225.1-k1 1225.1-k \(\Q(\sqrt{21}) \) \( 5^{2} \cdot 7^{2} \) $1$ $\mathsf{trivial}$ $0.061898400$ $13.58775316$ 2.936550080 \( \frac{4882432}{625} a - \frac{2592768}{125} \) \( \bigl[0\) , \( a - 1\) , \( 1\) , \( 13 a - 35\) , \( -53 a + 148\bigr] \) ${y}^2+{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(13a-35\right){x}-53a+148$
1225.1-l1 1225.1-l \(\Q(\sqrt{21}) \) \( 5^{2} \cdot 7^{2} \) $1$ $\mathsf{trivial}$ $0.032236886$ $10.72190660$ 2.715300910 \( -\frac{110592}{125} \) \( \bigl[0\) , \( 0\) , \( 1\) , \( -7\) , \( 12\bigr] \) ${y}^2+{y}={x}^{3}-7{x}+12$
1225.1-m1 1225.1-m \(\Q(\sqrt{21}) \) \( 5^{2} \cdot 7^{2} \) $1$ $\mathsf{trivial}$ $0.061898400$ $13.58775316$ 2.936550080 \( -\frac{4882432}{625} a - \frac{8081408}{625} \) \( \bigl[0\) , \( -a\) , \( 1\) , \( -13 a - 22\) , \( 53 a + 95\bigr] \) ${y}^2+{y}={x}^{3}-a{x}^{2}+\left(-13a-22\right){x}+53a+95$
1225.1-n1 1225.1-n \(\Q(\sqrt{21}) \) \( 5^{2} \cdot 7^{2} \) $0$ $\mathsf{trivial}$ $1$ $1.572392390$ 0.343124150 \( -\frac{9441441}{125} a - \frac{16862229}{125} \) \( \bigl[a + 1\) , \( a + 1\) , \( a\) , \( -8 a + 27\) , \( 40 a - 128\bigr] \) ${y}^2+\left(a+1\right){x}{y}+a{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(-8a+27\right){x}+40a-128$
1225.1-n2 1225.1-n \(\Q(\sqrt{21}) \) \( 5^{2} \cdot 7^{2} \) $0$ $\mathsf{trivial}$ $1$ $1.572392390$ 0.343124150 \( \frac{9441441}{125} a - \frac{5260734}{25} \) \( \bigl[a\) , \( a\) , \( a\) , \( 12 a + 12\) , \( -25 a - 52\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+a{x}^{2}+\left(12a+12\right){x}-25a-52$
  Download to          

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.