Properties

Label 2.2.209.1-50.6-g1
Base field \(\Q(\sqrt{209}) \)
Conductor norm \( 50 \)
CM no
Base change no
Q-curve no
Torsion order \( 1 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{209}) \)

Generator \(a\), with minimal polynomial \( x^{2} - x - 52 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-52, -1, 1]))
 
gp: K = nfinit(Polrev([-52, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-52, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(-557954461a-3754149800\right){x}+19502434692506a+131220496498681\)
sage: E = EllipticCurve([K([1,1]),K([1,1]),K([1,0]),K([-3754149800,-557954461]),K([131220496498681,19502434692506])])
 
gp: E = ellinit([Polrev([1,1]),Polrev([1,1]),Polrev([1,0]),Polrev([-3754149800,-557954461]),Polrev([131220496498681,19502434692506])], K);
 
magma: E := EllipticCurve([K![1,1],K![1,1],K![1,0],K![-3754149800,-557954461],K![131220496498681,19502434692506]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a-2)\) = \((11a+74)\cdot(-4a-27)^{2}\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 50 \) = \(2\cdot5^{2}\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((3657a-28264)\) = \((11a+74)^{2}\cdot(-4a-27)^{6}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 62500 \) = \(2^{2}\cdot5^{6}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{2361203}{4} a - \frac{18549919}{4} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(\frac{5935}{2} a + \frac{79863}{4} : \frac{1016445}{4} a + \frac{13678107}{8} : 1\right)$
Height \(1.7860224180822910825924916781699557713\)
Torsion structure: trivial
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 1.7860224180822910825924916781699557713 \)
Period: \( 5.8294206499100773885886556036022435267 \)
Tamagawa product: \( 8 \)  =  \(2\cdot2^{2}\)
Torsion order: \(1\)
Leading coefficient: \( 11.522829624484711247198792760069142759 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((11a+74)\) \(2\) \(2\) \(I_{2}\) Split multiplicative \(-1\) \(1\) \(2\) \(2\)
\((-4a-27)\) \(5\) \(4\) \(I_0^{*}\) Additive \(1\) \(2\) \(6\) \(0\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(5\) 5B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 5.
Its isogeny class 50.6-g consists of curves linked by isogenies of degree 5.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.