Properties

Label 2.2.209.1-16.4-a2
Base field \(\Q(\sqrt{209}) \)
Conductor norm \( 16 \)
CM yes (\(-11\))
Base change no
Q-curve yes
Torsion order \( 1 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{209}) \)

Generator \(a\), with minimal polynomial \( x^{2} - x - 52 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-52, -1, 1]))
 
gp: K = nfinit(Polrev([-52, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-52, -1, 1]);
 

Weierstrass equation

\({y}^2+a{y}={x}^{3}-a{x}^{2}+\left(931337a-7197740\right){x}+1351685914a-10446391276\)
sage: E = EllipticCurve([K([0,0]),K([0,-1]),K([0,1]),K([-7197740,931337]),K([-10446391276,1351685914])])
 
gp: E = ellinit([Polrev([0,0]),Polrev([0,-1]),Polrev([0,1]),Polrev([-7197740,931337]),Polrev([-10446391276,1351685914])], K);
 
magma: E := EllipticCurve([K![0,0],K![0,-1],K![0,1],K![-7197740,931337],K![-10446391276,1351685914]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-15a+116)\) = \((11a+74)^{4}\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 16 \) = \(2^{4}\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((5a-76)\) = \((11a+74)^{12}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 4096 \) = \(2^{12}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -32768 \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z[(1+\sqrt{-11})/2]\) (potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $N(\mathrm{U}(1))$

Mordell-Weil group

Rank: \(1\)
Generator $\left(-209709 a + 1620721 : 365142927 a - 2821976497 : 1\right)$
Height \(4.4522854538708100592553980919276405245\)
Torsion structure: trivial
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 4.4522854538708100592553980919276405245 \)
Period: \( 3.4769158424352161557941951589028318460 \)
Tamagawa product: \( 1 \)
Torsion order: \(1\)
Leading coefficient: \( 2.1415786686789418636283898123342378140 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((11a+74)\) \(2\) \(1\) \(II^{*}\) Additive \(-1\) \(4\) \(12\) \(0\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) .

The image is a Borel subgroup if \(p=11\), the normalizer of a split Cartan subgroup if \(\left(\frac{ -11 }{p}\right)=+1\) or the normalizer of a nonsplit Cartan subgroup if \(\left(\frac{ -11 }{p}\right)=-1\).

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 11.
Its isogeny class 16.4-a consists of curves linked by isogenies of degree 11.

Base change

This elliptic curve is a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.