Properties

Base field \(\Q(\sqrt{209}) \)
Label 2.2.209.1-11.1-a1
Conductor \((-70 a - 471)\)
Conductor norm \( 11 \)
CM no
base-change yes: 11.a1,43681.a1
Q-curve yes
Torsion order \( 1 \)
Rank not available

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

Base field \(\Q(\sqrt{209}) \)

Generator \(a\), with minimal polynomial \( x^{2} - x - 52 \); class number \(1\).

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-52, -1, 1]);
sage: x = polygen(QQ); K.<a> = NumberField(x^2 - x - 52)
gp (2.8): K = nfinit(a^2 - a - 52);

Weierstrass equation

\( y^2 + y = x^{3} - x^{2} - 7820 x - 263580 \)
magma: E := ChangeRing(EllipticCurve([0, -1, 1, -7820, -263580]),K);
sage: E = EllipticCurve(K, [0, -1, 1, -7820, -263580])
gp (2.8): E = ellinit([0, -1, 1, -7820, -263580],K)

This is a global minimal model.

sage: E.is_global_minimal_model()

Invariants

\(\mathfrak{N} \) = \((-70 a - 471)\) = \( \left(-70 a - 471\right) \)
magma: Conductor(E);
sage: E.conductor()
\(N(\mathfrak{N}) \) = \( 11 \) = \( 11 \)
magma: Norm(Conductor(E));
sage: E.conductor().norm()
\(\mathfrak{D}\) = \((11)\) = \( \left(-70 a - 471\right)^{2} \)
magma: Discriminant(E);
sage: E.discriminant()
gp (2.8): E.disc
\(N(\mathfrak{D})\) = \( 121 \) = \( 11^{2} \)
magma: Norm(Discriminant(E));
sage: E.discriminant().norm()
gp (2.8): norm(E.disc)
\(j\) = \( -\frac{52893159101157376}{11} \)
magma: jInvariant(E);
sage: E.j_invariant()
gp (2.8): E.j
\( \text{End} (E) \) = \(\Z\)   (no Complex Multiplication )
magma: HasComplexMultiplication(E);
sage: E.has_cm(), E.cm_discriminant()
\( \text{ST} (E) \) = $\mathrm{SU}(2)$

Mordell-Weil group

Rank not available.
magma: Rank(E);
sage: E.rank()
magma: Generators(E); // includes torsion
sage: E.gens()

Regulator: not available

magma: Regulator(Generators(E));
sage: E.regulator_of_points(E.gens())

Torsion subgroup

Structure: Trivial
magma: TorsionSubgroup(E);
sage: E.torsion_subgroup().gens()
gp (2.8): elltors(E)[2]
magma: Order(TorsionSubgroup(E));
sage: E.torsion_order()
gp (2.8): elltors(E)[1]

Local data at primes of bad reduction

magma: LocalInformation(E);
sage: E.local_data()
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\( \left(-70 a - 471\right) \) \(11\) \(2\) \(I_{2}\) Split multiplicative \(-1\) \(1\) \(2\) \(2\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p \) except those listed.

prime Image of Galois Representation
\(5\) 5B.1.2

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 5 and 25.
Its isogeny class 11.1-a consists of curves linked by isogenies of degrees dividing 25.

Base change

This curve is the base-change of elliptic curves 11.a1, 43681.a1, defined over \(\Q\), so it is also a \(\Q\)-curve.