Properties

Label 2.2.204.1-24.1-d3
Base field \(\Q(\sqrt{51}) \)
Conductor norm \( 24 \)
CM no
Base change yes
Q-curve yes
Torsion order \( 8 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{51}) \)

Generator \(a\), with minimal polynomial \( x^{2} - 51 \); class number \(2\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-51, 0, 1]))
 
gp: K = nfinit(Polrev([-51, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-51, 0, 1]);
 

Weierstrass equation

\({y}^2+\left(w+1\right){x}{y}+\left(w+1\right){y}={x}^3+\left(-w+1\right){x}^2+\left(-764w-5372\right){x}+20035w+143270\)
sage: E = EllipticCurve([K([1,1]),K([1,-1]),K([1,1]),K([-5372,-764]),K([143270,20035])])
 
gp: E = ellinit([Polrev([1,1]),Polrev([1,-1]),Polrev([1,1]),Polrev([-5372,-764]),Polrev([143270,20035])], K);
 
magma: E := EllipticCurve([K![1,1],K![1,-1],K![1,1],K![-5372,-764],K![143270,20035]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((12,2a+6)\) = \((a-7)^{3}\cdot(3,a)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 24 \) = \(2^{3}\cdot3\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((36)\) = \((a-7)^{4}\cdot(3,a)^{4}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 1296 \) = \(2^{4}\cdot3^{4}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{35152}{9} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\oplus\Z/4\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generators: $\left(\frac{5}{2} a + 12 : -\frac{31}{4} a - \frac{281}{4} : 1\right)$ $\left(-a - 13 : -43 a - 322 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 37.204477903286444156256467603526628672 \)
Tamagawa product: \( 4 \)  =  \(2\cdot2\)
Torsion order: \(8\)
Leading coefficient: \( 0.65120861805790220019581414828826630279 \)
Analytic order of Ш: \( 4 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a-7)\) \(2\) \(2\) \(III\) Additive \(1\) \(3\) \(4\) \(0\)
\((3,a)\) \(3\) \(2\) \(I_{4}\) Non-split multiplicative \(1\) \(1\) \(4\) \(4\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2Cs

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2 and 4.
Its isogeny class 24.1-d consists of curves linked by isogenies of degrees dividing 8.

Base change

This elliptic curve is a \(\Q\)-curve. It is the base change of the following 2 elliptic curves:

Base field Curve
\(\Q\) 24.a4
\(\Q\) 41616.r4