Properties

Label 2.2.204.1-24.1-b5
Base field \(\Q(\sqrt{51}) \)
Conductor norm \( 24 \)
CM no
Base change yes
Q-curve yes
Torsion order \( 2 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{51}) \)

Generator \(a\), with minimal polynomial \( x^{2} - 51 \); class number \(2\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-51, 0, 1]))
 
gp: K = nfinit(Polrev([-51, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-51, 0, 1]);
 

Weierstrass equation

\({y}^2+\left(w+1\right){x}{y}={x}^3+\left(-11254w-80340\right){x}-1799688w-12852312\)
sage: E = EllipticCurve([K([1,1]),K([0,0]),K([0,0]),K([-80340,-11254]),K([-12852312,-1799688])])
 
gp: E = ellinit([Polrev([1,1]),Polrev([0,0]),Polrev([0,0]),Polrev([-80340,-11254]),Polrev([-12852312,-1799688])], K);
 
magma: E := EllipticCurve([K![1,1],K![0,0],K![0,0],K![-80340,-11254],K![-12852312,-1799688]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((12,2a+6)\) = \((a-7)^{3}\cdot(3,a)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 24 \) = \(2^{3}\cdot3\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((48)\) = \((a-7)^{8}\cdot(3,a)^{2}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 2304 \) = \(2^{8}\cdot3^{2}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{28756228}{3} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-\frac{33}{2} a - 121 : \frac{275}{4} a + \frac{1925}{4} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 5.6835085175015869010371476279434336896 \)
Tamagawa product: \( 8 \)  =  \(2^{2}\cdot2\)
Torsion order: \(2\)
Leading coefficient: \( 0.79585037844610315328498856845581550774 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a-7)\) \(2\) \(4\) \(I_{1}^{*}\) Additive \(-1\) \(3\) \(8\) \(0\)
\((3,a)\) \(3\) \(2\) \(I_{2}\) Split multiplicative \(-1\) \(1\) \(2\) \(2\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 4 and 8.
Its isogeny class 24.1-b consists of curves linked by isogenies of degrees dividing 8.

Base change

This elliptic curve is a \(\Q\)-curve. It is the base change of the following 2 elliptic curves:

Base field Curve
\(\Q\) 48.a2
\(\Q\) 20808.i2