Properties

Label 2.2.184.1-9.3-a2
Base field \(\Q(\sqrt{46}) \)
Conductor norm \( 9 \)
CM yes (\(-8\))
Base change no
Q-curve yes
Torsion order \( 2 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{46}) \)

Generator \(a\), with minimal polynomial \( x^{2} - 46 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-46, 0, 1]))
 
gp: K = nfinit(Polrev([-46, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-46, 0, 1]);
 

Weierstrass equation

\({y}^2+a{x}{y}+\left(a+1\right){y}={x}^{3}-a{x}^{2}+\left(-79a-444\right){x}+620a+4423\)
sage: E = EllipticCurve([K([0,1]),K([0,-1]),K([1,1]),K([-444,-79]),K([4423,620])])
 
gp: E = ellinit([Polrev([0,1]),Polrev([0,-1]),Polrev([1,1]),Polrev([-444,-79]),Polrev([4423,620])], K);
 
magma: E := EllipticCurve([K![0,1],K![0,-1],K![1,1],K![-444,-79],K![4423,620]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-14a+95)\) = \((a-7)^{2}\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 9 \) = \(3^{2}\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-10a+73)\) = \((a-7)^{6}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 729 \) = \(3^{6}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( 8000 \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z[\sqrt{-2}]\) (potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $N(\mathrm{U}(1))$

Mordell-Weil group

Rank: \(1\)
Generator $\left(\frac{23}{25} a + \frac{3}{25} : -\frac{577}{125} a - \frac{6147}{125} : 1\right)$
Height \(1.2521557389869081579042032207832854030\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(2 a + \frac{15}{2} : -\frac{17}{4} a - \frac{93}{2} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 1.2521557389869081579042032207832854030 \)
Period: \( 41.445323775488651232459852047152449256 \)
Tamagawa product: \( 2 \)
Torsion order: \(2\)
Leading coefficient: \( 3.8258238797557897338894974863573701705 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a-7)\) \(3\) \(2\) \(I_0^{*}\) Additive \(-1\) \(2\) \(6\) \(0\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) .

The image is a Borel subgroup if \(p=2\), the normalizer of a split Cartan subgroup if \(\left(\frac{ -2 }{p}\right)=+1\) or the normalizer of a nonsplit Cartan subgroup if \(\left(\frac{ -2 }{p}\right)=-1\).

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2.
Its isogeny class 9.3-a consists of curves linked by isogenies of degree 2.

Base change

This elliptic curve is a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.