Properties

Label 2.2.184.1-6.2-b1
Base field \(\Q(\sqrt{46}) \)
Conductor norm \( 6 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{46}) \)

Generator \(a\), with minimal polynomial \( x^{2} - 46 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-46, 0, 1]))
 
gp: K = nfinit(Polrev([-46, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-46, 0, 1]);
 

Weierstrass equation

\({y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}-a{x}^{2}+\left(2401231a-16285948\right){x}-5263220672a+35696899378\)
sage: E = EllipticCurve([K([1,1]),K([0,-1]),K([1,1]),K([-16285948,2401231]),K([35696899378,-5263220672])])
 
gp: E = ellinit([Polrev([1,1]),Polrev([0,-1]),Polrev([1,1]),Polrev([-16285948,2401231]),Polrev([35696899378,-5263220672])], K);
 
magma: E := EllipticCurve([K![1,1],K![0,-1],K![1,1],K![-16285948,2401231],K![35696899378,-5263220672]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-5a+34)\) = \((-23a+156)\cdot(a+7)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 6 \) = \(2\cdot3\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-160a-1168)\) = \((-23a+156)^{8}\cdot(a+7)^{6}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 186624 \) = \(2^{8}\cdot3^{6}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{3535318439}{5832} a - \frac{47959064233}{11664} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(-295 a + 1998 : 4530 a - 30717 : 1\right)$
Height \(0.23114559295140330995317094288326034283\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(486 a - 3299 : 1406 a - 9529 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.23114559295140330995317094288326034283 \)
Period: \( 23.696821987697670537614431236460045277 \)
Tamagawa product: \( 12 \)  =  \(2\cdot( 2 \cdot 3 )\)
Torsion order: \(2\)
Leading coefficient: \( 2.4228027756117493743436077585167595224 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-23a+156)\) \(2\) \(2\) \(I_{8}\) Non-split multiplicative \(1\) \(1\) \(8\) \(8\)
\((a+7)\) \(3\) \(6\) \(I_{6}\) Split multiplicative \(-1\) \(1\) \(6\) \(6\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2.
Its isogeny class 6.2-b consists of curves linked by isogenies of degree 2.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.