Properties

Label 2.2.184.1-32.1-c1
Base field \(\Q(\sqrt{46}) \)
Conductor \((-92a+624)\)
Conductor norm \( 32 \)
CM yes (\(-4\))
Base change yes: 64.a4,16928.d4
Q-curve yes
Torsion order \( 2 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Base field \(\Q(\sqrt{46}) \)

Generator \(a\), with minimal polynomial \( x^{2} - 46 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-46, 0, 1]))
 
gp: K = nfinit(Pol(Vecrev([-46, 0, 1])));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-46, 0, 1]);
 

Weierstrass equation

\({y}^2={x}^{3}+{x}\)
sage: E = EllipticCurve([K([0,0]),K([0,0]),K([0,0]),K([1,0]),K([0,0])])
 
gp: E = ellinit([Pol(Vecrev([0,0])),Pol(Vecrev([0,0])),Pol(Vecrev([0,0])),Pol(Vecrev([1,0])),Pol(Vecrev([0,0]))], K);
 
magma: E := EllipticCurve([K![0,0],K![0,0],K![0,0],K![1,0],K![0,0]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-92a+624)\) = \((-23a+156)^{5}\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 32 \) = \(2^{5}\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-64)\) = \((-23a+156)^{12}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 4096 \) = \(2^{12}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( 1728 \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z[\sqrt{-1}]\) (potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $N(\mathrm{U}(1))$

Mordell-Weil group

Rank: \(1\)
Generator $\left(\frac{289}{23} : -\frac{3485}{529} a : 1\right)$
Height \(5.18393960577632\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(0 : 0 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 5.18393960577632 \)
Period: \( 13.7503716360407 \)
Tamagawa product: \( 2 \)
Torsion order: \(2\)
Leading coefficient: \( 5.25491212426743 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-23a+156)\) \(2\) \(2\) \(III^{*}\) Additive \(-1\) \(5\) \(12\) \(0\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) .

The image is a Borel subgroup if \(p=2\), the normalizer of a split Cartan subgroup if \(\left(\frac{ -1 }{p}\right)=+1\) or the normalizer of a nonsplit Cartan subgroup if \(\left(\frac{ -1 }{p}\right)=-1\).

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2 and 4.
Its isogeny class 32.1-c consists of curves linked by isogenies of degrees dividing 4.

Base change

This curve is the base change of 64.a4, 16928.d4, defined over \(\Q\), so it is also a \(\Q\)-curve.