Properties

Label 2.2.184.1-14.1-b1
Base field \(\Q(\sqrt{46}) \)
Conductor norm \( 14 \)
CM no
Base change no
Q-curve no
Torsion order \( 1 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{46}) \)

Generator \(a\), with minimal polynomial \( x^{2} - 46 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-46, 0, 1]))
 
gp: K = nfinit(Polrev([-46, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-46, 0, 1]);
 

Weierstrass equation

\({y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}-a{x}^{2}+\left(19885746a-134871681\right){x}-141136021647a+957231071290\)
sage: E = EllipticCurve([K([1,0]),K([0,-1]),K([1,1]),K([-134871681,19885746]),K([957231071290,-141136021647])])
 
gp: E = ellinit([Polrev([1,0]),Polrev([0,-1]),Polrev([1,1]),Polrev([-134871681,19885746]),Polrev([957231071290,-141136021647])], K);
 
magma: E := EllipticCurve([K![1,0],K![0,-1],K![1,1],K![-134871681,19885746],K![957231071290,-141136021647]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((3a+20)\) = \((-23a+156)\cdot(-4a+27)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 14 \) = \(2\cdot7\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-64a+768)\) = \((-23a+156)^{13}\cdot(-4a+27)^{2}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 401408 \) = \(2^{13}\cdot7^{2}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{3621929}{6272} a - \frac{4226507}{1568} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(1235 a - 8374 : -97726 a + 662805 : 1\right)$
Height \(0.37181524339400987745561099186762251758\)
Torsion structure: trivial
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.37181524339400987745561099186762251758 \)
Period: \( 14.076419125553952399469813169691738549 \)
Tamagawa product: \( 2 \)  =  \(1\cdot2\)
Torsion order: \(1\)
Leading coefficient: \( 1.5433714420577966919828214497798308214 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-23a+156)\) \(2\) \(1\) \(I_{13}\) Non-split multiplicative \(1\) \(1\) \(13\) \(13\)
\((-4a+27)\) \(7\) \(2\) \(I_{2}\) Split multiplicative \(-1\) \(1\) \(2\) \(2\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) .

Isogenies and isogeny class

This curve has no rational isogenies. Its isogeny class 14.1-b consists of this curve only.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.