Properties

Label 2.2.184.1-10.1-a1
Base field \(\Q(\sqrt{46}) \)
Conductor norm \( 10 \)
CM no
Base change no
Q-curve no
Torsion order \( 1 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{46}) \)

Generator \(a\), with minimal polynomial \( x^{2} - 46 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-46, 0, 1]))
 
gp: K = nfinit(Polrev([-46, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-46, 0, 1]);
 

Weierstrass equation

\({y}^2+{x}{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(85a-555\right){x}+941a-6363\)
sage: E = EllipticCurve([K([1,0]),K([1,1]),K([0,0]),K([-555,85]),K([-6363,941])])
 
gp: E = ellinit([Polrev([1,0]),Polrev([1,1]),Polrev([0,0]),Polrev([-555,85]),Polrev([-6363,941])], K);
 
magma: E := EllipticCurve([K![1,0],K![1,1],K![0,0],K![-555,85],K![-6363,941]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a-6)\) = \((-23a+156)\cdot(9a+61)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 10 \) = \(2\cdot5\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((77a-522)\) = \((-23a+156)\cdot(9a+61)^{3}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -250 \) = \(-2\cdot5^{3}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{59899811}{250} a + \frac{201658777}{125} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(\frac{10}{9} a - \frac{91}{9} : -\frac{11}{27} a + \frac{110}{27} : 1\right)$
Height \(0.29885946088966975974568615392933295992\)
Torsion structure: trivial
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.29885946088966975974568615392933295992 \)
Period: \( 19.553518003960958290969204348580390755 \)
Tamagawa product: \( 3 \)  =  \(1\cdot3\)
Torsion order: \(1\)
Leading coefficient: \( 2.5848434964236790994684496996222204742 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-23a+156)\) \(2\) \(1\) \(I_{1}\) Non-split multiplicative \(1\) \(1\) \(1\) \(1\)
\((9a+61)\) \(5\) \(3\) \(I_{3}\) Split multiplicative \(-1\) \(1\) \(3\) \(3\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) .

Isogenies and isogeny class

This curve has no rational isogenies. Its isogeny class 10.1-a consists of this curve only.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.