Learn more

Refine search

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.


Results (1-50 of 170 matches)

Next   Download to        
Label Base field Conductor Isogeny class Weierstrass coefficients
2.1-a1 \(\Q(\sqrt{46}) \) 2.1 2.1-a \( \bigl[1\) , \( -a + 1\) , \( a\) , \( 2082 a - 14114\) , \( -129362 a + 877358\bigr] \)
2.1-b1 \(\Q(\sqrt{46}) \) 2.1 2.1-b \( \bigl[1\) , \( a + 1\) , \( 0\) , \( 6140 a - 41622\) , \( -1519636 a + 10306692\bigr] \)
2.1-c1 \(\Q(\sqrt{46}) \) 2.1 2.1-c \( \bigl[1\) , \( a + 1\) , \( a\) , \( -2083 a - 14114\) , \( 129362 a + 877358\bigr] \)
2.1-d1 \(\Q(\sqrt{46}) \) 2.1 2.1-d \( \bigl[1\) , \( -a + 1\) , \( 0\) , \( -6140 a - 41622\) , \( 1519636 a + 10306692\bigr] \)
4.1-a1 \(\Q(\sqrt{46}) \) 4.1 4.1-a \( \bigl[0\) , \( a - 1\) , \( 0\) , \( 32868472 a - 222924812\) , \( -267317636924 a + 1813036423935\bigr] \)
4.1-b1 \(\Q(\sqrt{46}) \) 4.1 4.1-b \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( 20\) , \( -17\bigr] \)
4.1-c1 \(\Q(\sqrt{46}) \) 4.1 4.1-c \( \bigl[0\) , \( a - 1\) , \( 0\) , \( 20\) , \( -17\bigr] \)
4.1-d1 \(\Q(\sqrt{46}) \) 4.1 4.1-d \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( -32868472 a - 222924812\) , \( 267317636924 a + 1813036423935\bigr] \)
6.1-a1 \(\Q(\sqrt{46}) \) 6.1 6.1-a \( \bigl[a + 1\) , \( 0\) , \( 1\) , \( 186 a - 1189\) , \( 9426 a - 63802\bigr] \)
6.1-a2 \(\Q(\sqrt{46}) \) 6.1 6.1-a \( \bigl[a + 1\) , \( 0\) , \( 1\) , \( 4046 a - 27369\) , \( 375214 a - 2544698\bigr] \)
6.1-b1 \(\Q(\sqrt{46}) \) 6.1 6.1-b \( \bigl[a + 1\) , \( 0\) , \( a + 1\) , \( -2401233 a - 16285948\) , \( 5263220671 a + 35696899378\bigr] \)
6.1-b2 \(\Q(\sqrt{46}) \) 6.1 6.1-b \( \bigl[a + 1\) , \( 0\) , \( a + 1\) , \( -38420893 a - 260583168\) , \( 337407147143 a + 2288406610602\bigr] \)
6.2-a1 \(\Q(\sqrt{46}) \) 6.2 6.2-a \( \bigl[a + 1\) , \( -a\) , \( 1\) , \( -187 a - 1189\) , \( -9426 a - 63802\bigr] \)
6.2-a2 \(\Q(\sqrt{46}) \) 6.2 6.2-a \( \bigl[a + 1\) , \( -a\) , \( 1\) , \( -4047 a - 27369\) , \( -375214 a - 2544698\bigr] \)
6.2-b1 \(\Q(\sqrt{46}) \) 6.2 6.2-b \( \bigl[a + 1\) , \( -a\) , \( a + 1\) , \( 2401231 a - 16285948\) , \( -5263220672 a + 35696899378\bigr] \)
6.2-b2 \(\Q(\sqrt{46}) \) 6.2 6.2-b \( \bigl[a + 1\) , \( -a\) , \( a + 1\) , \( 38420891 a - 260583168\) , \( -337407147144 a + 2288406610602\bigr] \)
8.1-a1 \(\Q(\sqrt{46}) \) 8.1 8.1-a \( \bigl[0\) , \( 1\) , \( 0\) , \( -1196 a + 8112\) , \( -140998 a + 956295\bigr] \)
8.1-b1 \(\Q(\sqrt{46}) \) 8.1 8.1-b \( \bigl[0\) , \( 1\) , \( 0\) , \( 1196 a + 8112\) , \( 140998 a + 956295\bigr] \)
9.1-a1 \(\Q(\sqrt{46}) \) 9.1 9.1-a \( \bigl[a + 1\) , \( a - 1\) , \( a\) , \( -10679 a - 72448\) , \( 1529184 a + 10371419\bigr] \)
9.1-a2 \(\Q(\sqrt{46}) \) 9.1 9.1-a \( \bigl[a + 1\) , \( a - 1\) , \( a\) , \( -172139 a - 1167523\) , \( 100052859 a + 678591494\bigr] \)
9.1-b1 \(\Q(\sqrt{46}) \) 9.1 9.1-b \( \bigl[a + 1\) , \( a - 1\) , \( 0\) , \( 10700 a - 72425\) , \( -1601632 a + 10863136\bigr] \)
9.1-b2 \(\Q(\sqrt{46}) \) 9.1 9.1-b \( \bigl[a + 1\) , \( a - 1\) , \( 0\) , \( 172160 a - 1167500\) , \( -101220382 a + 686510371\bigr] \)
9.2-a1 \(\Q(\sqrt{46}) \) 9.2 9.2-a \( \bigl[a\) , \( a\) , \( a + 1\) , \( -283972 a - 1926004\) , \( -191681032 a - 1300044015\bigr] \)
9.2-a2 \(\Q(\sqrt{46}) \) 9.2 9.2-a \( \bigl[a\) , \( a\) , \( a + 1\) , \( 78 a - 444\) , \( -621 a + 4423\bigr] \)
9.3-a1 \(\Q(\sqrt{46}) \) 9.3 9.3-a \( \bigl[a\) , \( -a\) , \( a + 1\) , \( 283971 a - 1926004\) , \( 191681031 a - 1300044015\bigr] \)
9.3-a2 \(\Q(\sqrt{46}) \) 9.3 9.3-a \( \bigl[a\) , \( -a\) , \( a + 1\) , \( -79 a - 444\) , \( 620 a + 4423\bigr] \)
10.1-a1 \(\Q(\sqrt{46}) \) 10.1 10.1-a \( \bigl[1\) , \( a + 1\) , \( 0\) , \( 85 a - 555\) , \( 941 a - 6363\bigr] \)
10.1-b1 \(\Q(\sqrt{46}) \) 10.1 10.1-b \( \bigl[1\) , \( 1\) , \( 0\) , \( -508516327 a - 3448925531\) , \( 183383033227434 a + 1243764244654883\bigr] \)
10.1-c1 \(\Q(\sqrt{46}) \) 10.1 10.1-c \( \bigl[a + 1\) , \( -a\) , \( 1\) , \( 1194937761 a - 8104462185\) , \( 202073642980310 a - 1370530127584686\bigr] \)
10.1-d1 \(\Q(\sqrt{46}) \) 10.1 10.1-d \( \bigl[a + 1\) , \( -a\) , \( a + 1\) , \( -42 a - 232\) , \( -439 a - 2868\bigr] \)
10.1-e1 \(\Q(\sqrt{46}) \) 10.1 10.1-e \( \bigl[1\) , \( 1\) , \( a\) , \( -a + 1\) , \( a - 41\bigr] \)
10.1-f1 \(\Q(\sqrt{46}) \) 10.1 10.1-f \( \bigl[1\) , \( a + 1\) , \( a\) , \( -1407458 a - 9545831\) , \( -2538606312 a - 17217665723\bigr] \)
10.2-a1 \(\Q(\sqrt{46}) \) 10.2 10.2-a \( \bigl[1\) , \( -a + 1\) , \( 0\) , \( -85 a - 555\) , \( -941 a - 6363\bigr] \)
10.2-b1 \(\Q(\sqrt{46}) \) 10.2 10.2-b \( \bigl[1\) , \( 1\) , \( 0\) , \( 508516327 a - 3448925531\) , \( -183383033227434 a + 1243764244654883\bigr] \)
10.2-c1 \(\Q(\sqrt{46}) \) 10.2 10.2-c \( \bigl[a + 1\) , \( 0\) , \( 1\) , \( -1194937762 a - 8104462185\) , \( -202073642980310 a - 1370530127584686\bigr] \)
10.2-d1 \(\Q(\sqrt{46}) \) 10.2 10.2-d \( \bigl[a + 1\) , \( 0\) , \( a + 1\) , \( 40 a - 232\) , \( 438 a - 2868\bigr] \)
10.2-e1 \(\Q(\sqrt{46}) \) 10.2 10.2-e \( \bigl[1\) , \( 1\) , \( a\) , \( 1\) , \( -a - 41\bigr] \)
10.2-f1 \(\Q(\sqrt{46}) \) 10.2 10.2-f \( \bigl[1\) , \( -a + 1\) , \( a\) , \( 1407457 a - 9545831\) , \( 2538606312 a - 17217665723\bigr] \)
14.1-a1 \(\Q(\sqrt{46}) \) 14.1 14.1-a \( \bigl[1\) , \( -a\) , \( 1\) , \( 4 a + 43\) , \( -3 a - 8\bigr] \)
14.1-b1 \(\Q(\sqrt{46}) \) 14.1 14.1-b \( \bigl[1\) , \( -a\) , \( a + 1\) , \( 19885746 a - 134871681\) , \( -141136021647 a + 957231071290\bigr] \)
14.2-a1 \(\Q(\sqrt{46}) \) 14.2 14.2-a \( \bigl[1\) , \( a\) , \( 1\) , \( -4 a + 43\) , \( 3 a - 8\bigr] \)
14.2-b1 \(\Q(\sqrt{46}) \) 14.2 14.2-b \( \bigl[1\) , \( a\) , \( a + 1\) , \( -19885747 a - 134871681\) , \( 141136021646 a + 957231071290\bigr] \)
15.2-a1 \(\Q(\sqrt{46}) \) 15.2 15.2-a \( \bigl[a\) , \( 1\) , \( 1\) , \( 660184220 a - 4477587181\) , \( 45085488471578 a - 305784660264560\bigr] \)
15.2-b1 \(\Q(\sqrt{46}) \) 15.2 15.2-b \( \bigl[a\) , \( 1\) , \( 1\) , \( -6 a + 11\) , \( -43 a - 230\bigr] \)
15.3-a1 \(\Q(\sqrt{46}) \) 15.3 15.3-a \( \bigl[a\) , \( 1\) , \( 1\) , \( -660184221 a - 4477587181\) , \( -45085488471578 a - 305784660264560\bigr] \)
15.3-b1 \(\Q(\sqrt{46}) \) 15.3 15.3-b \( \bigl[a\) , \( 1\) , \( 1\) , \( 5 a + 11\) , \( 43 a - 230\bigr] \)
16.1-a1 \(\Q(\sqrt{46}) \) 16.1 16.1-a \( \bigl[0\) , \( a + 1\) , \( 0\) , \( -32868472 a - 222924812\) , \( -267317636924 a - 1813036423935\bigr] \)
16.1-b1 \(\Q(\sqrt{46}) \) 16.1 16.1-b \( \bigl[a\) , \( -a\) , \( a\) , \( 24549 a - 166515\) , \( -11916898 a + 80824327\bigr] \)
16.1-c1 \(\Q(\sqrt{46}) \) 16.1 16.1-c \( \bigl[0\) , \( -a + 1\) , \( 0\) , \( 32868472 a - 222924812\) , \( 267317636924 a - 1813036423935\bigr] \)
16.1-d1 \(\Q(\sqrt{46}) \) 16.1 16.1-d \( \bigl[a\) , \( a\) , \( a\) , \( 8341 a - 56483\) , \( -1066384 a + 7232783\bigr] \)
Next   Download to