Properties

Label 2.2.17.1-676.1-g6
Base field \(\Q(\sqrt{17}) \)
Conductor norm \( 676 \)
CM no
Base change no
Q-curve no
Torsion order \( 12 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{17}) \)

Generator \(a\), with minimal polynomial \( x^{2} - x - 4 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-4, -1, 1]))
 
gp: K = nfinit(Polrev([-4, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-4, -1, 1]);
 

Weierstrass equation

\({y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}+\left(588a-1510\right){x}-3188a+8164\)
sage: E = EllipticCurve([K([1,0]),K([0,0]),K([1,1]),K([-1510,588]),K([8164,-3188])])
 
gp: E = ellinit([Polrev([1,0]),Polrev([0,0]),Polrev([1,1]),Polrev([-1510,588]),Polrev([8164,-3188])], K);
 
magma: E := EllipticCurve([K![1,0],K![0,0],K![1,1],K![-1510,588],K![8164,-3188]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((26)\) = \((-a+2)\cdot(-a-1)\cdot(-2a+3)\cdot(2a+1)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 676 \) = \(2\cdot2\cdot13\cdot13\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((400192a+3547648)\) = \((-a+2)^{8}\cdot(-a-1)^{6}\cdot(-2a+3)^{6}\cdot(2a+1)^{2}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 13364932132864 \) = \(2^{8}\cdot2^{6}\cdot13^{6}\cdot13^{2}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{17295813229563}{1235663104} a + \frac{29339176138349}{1235663104} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(-30 a + 76 : 319 a - 817 : 1\right)$
Height \(1.2053005581519625659579947173351107946\)
Torsion structure: \(\Z/2\Z\oplus\Z/6\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generators: $\left(\frac{51}{4} a - 32 : -\frac{55}{8} a + \frac{31}{2} : 1\right)$ $\left(8 a - 20 : 54 a - 140 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 1.2053005581519625659579947173351107946 \)
Period: \( 5.4545782941220294070476933661475571725 \)
Tamagawa product: \( 144 \)  =  \(2\cdot( 2 \cdot 3 )\cdot( 2 \cdot 3 )\cdot2\)
Torsion order: \(12\)
Leading coefficient: \( 3.1890554641825286746039076338941992707 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-a+2)\) \(2\) \(2\) \(I_{8}\) Non-split multiplicative \(1\) \(1\) \(8\) \(8\)
\((-a-1)\) \(2\) \(6\) \(I_{6}\) Split multiplicative \(-1\) \(1\) \(6\) \(6\)
\((-2a+3)\) \(13\) \(6\) \(I_{6}\) Split multiplicative \(-1\) \(1\) \(6\) \(6\)
\((2a+1)\) \(13\) \(2\) \(I_{2}\) Split multiplicative \(-1\) \(1\) \(2\) \(2\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2Cs
\(3\) 3B.1.1

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 3 and 6.
Its isogeny class 676.1-g consists of curves linked by isogenies of degrees dividing 12.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.