Label |
Class |
Class size |
Class degree |
Base field |
Field degree |
Field signature |
Conductor |
Conductor norm |
Discriminant norm |
Root analytic conductor |
Bad primes |
Rank |
Torsion |
CM |
CM |
Sato-Tate |
$\Q$-curve |
Base change |
Semistable |
Potentially good |
Nonmax $\ell$ |
mod-$\ell$ images |
$Ш_{\textrm{an}}$ |
Tamagawa |
Regulator |
Period |
Leading coeff |
j-invariant |
Weierstrass coefficients |
Weierstrass equation |
64.5-a1 |
64.5-a |
$4$ |
$4$ |
\(\Q(\sqrt{17}) \) |
$2$ |
$[2, 0]$ |
64.5 |
\( 2^{6} \) |
\( 2^{13} \) |
$1.04210$ |
$(-a+2), (-a-1)$ |
$0$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2 \) |
$1$ |
$7.156385278$ |
0.867839188 |
\( -\frac{217}{16} a - \frac{339}{16} \) |
\( \bigl[a + 1\) , \( a\) , \( a + 1\) , \( a + 2\) , \( 3 a - 4\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+a{x}^{2}+\left(a+2\right){x}+3a-4$ |
64.5-a2 |
64.5-a |
$4$ |
$4$ |
\(\Q(\sqrt{17}) \) |
$2$ |
$[2, 0]$ |
64.5 |
\( 2^{6} \) |
\( 2^{13} \) |
$1.04210$ |
$(-a+2), (-a-1)$ |
$0$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2 \) |
$1$ |
$7.156385278$ |
0.867839188 |
\( -\frac{1592342311}{2} a + \frac{4078872403}{2} \) |
\( \bigl[a + 1\) , \( -a + 1\) , \( 0\) , \( -16 a - 25\) , \( -4 a - 9\bigr] \) |
${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-16a-25\right){x}-4a-9$ |
64.5-a3 |
64.5-a |
$4$ |
$4$ |
\(\Q(\sqrt{17}) \) |
$2$ |
$[2, 0]$ |
64.5 |
\( 2^{6} \) |
\( 2^{8} \) |
$1.04210$ |
$(-a+2), (-a-1)$ |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2Cs |
$1$ |
\( 2^{2} \) |
$1$ |
$14.31277055$ |
0.867839188 |
\( \frac{159495}{4} a + \frac{481229}{4} \) |
\( \bigl[a + 1\) , \( -a + 1\) , \( 0\) , \( -11 a - 15\) , \( -33 a - 51\bigr] \) |
${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-11a-15\right){x}-33a-51$ |
64.5-a4 |
64.5-a |
$4$ |
$4$ |
\(\Q(\sqrt{17}) \) |
$2$ |
$[2, 0]$ |
64.5 |
\( 2^{6} \) |
\( 2^{10} \) |
$1.04210$ |
$(-a+2), (-a-1)$ |
$0$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2 \) |
$1$ |
$7.156385278$ |
0.867839188 |
\( \frac{23841914775}{2} a + \frac{37230413581}{2} \) |
\( \bigl[a + 1\) , \( -a + 1\) , \( 0\) , \( -171 a - 265\) , \( -1835 a - 2865\bigr] \) |
${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-171a-265\right){x}-1835a-2865$ |
64.5-b1 |
64.5-b |
$4$ |
$4$ |
\(\Q(\sqrt{17}) \) |
$2$ |
$[2, 0]$ |
64.5 |
\( 2^{6} \) |
\( 2^{13} \) |
$1.04210$ |
$(-a+2), (-a-1)$ |
$0$ |
$\Z/4\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{3} \) |
$1$ |
$14.01972920$ |
1.700141892 |
\( -\frac{217}{16} a - \frac{339}{16} \) |
\( \bigl[a + 1\) , \( -1\) , \( a + 1\) , \( -2 a - 3\) , \( 2 a + 3\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}-{x}^{2}+\left(-2a-3\right){x}+2a+3$ |
64.5-b2 |
64.5-b |
$4$ |
$4$ |
\(\Q(\sqrt{17}) \) |
$2$ |
$[2, 0]$ |
64.5 |
\( 2^{6} \) |
\( 2^{13} \) |
$1.04210$ |
$(-a+2), (-a-1)$ |
$0$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{2} \) |
$1$ |
$7.009864600$ |
1.700141892 |
\( -\frac{1592342311}{2} a + \frac{4078872403}{2} \) |
\( \bigl[a + 1\) , \( 0\) , \( 0\) , \( 38 a - 95\) , \( 180 a - 461\bigr] \) |
${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(38a-95\right){x}+180a-461$ |
64.5-b3 |
64.5-b |
$4$ |
$4$ |
\(\Q(\sqrt{17}) \) |
$2$ |
$[2, 0]$ |
64.5 |
\( 2^{6} \) |
\( 2^{8} \) |
$1.04210$ |
$(-a+2), (-a-1)$ |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2Cs |
$1$ |
\( 2^{2} \) |
$1$ |
$28.03945840$ |
1.700141892 |
\( \frac{159495}{4} a + \frac{481229}{4} \) |
\( \bigl[a + 1\) , \( 0\) , \( 0\) , \( 3 a - 5\) , \( 3 a - 7\bigr] \) |
${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(3a-5\right){x}+3a-7$ |
64.5-b4 |
64.5-b |
$4$ |
$4$ |
\(\Q(\sqrt{17}) \) |
$2$ |
$[2, 0]$ |
64.5 |
\( 2^{6} \) |
\( 2^{10} \) |
$1.04210$ |
$(-a+2), (-a-1)$ |
$0$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 1 \) |
$1$ |
$28.03945840$ |
1.700141892 |
\( \frac{23841914775}{2} a + \frac{37230413581}{2} \) |
\( \bigl[a + 1\) , \( 0\) , \( 0\) , \( 3 a - 15\) , \( -3 a + 11\bigr] \) |
${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(3a-15\right){x}-3a+11$ |
*The rank, regulator and analytic order of Ш are
not known for all curves in the database; curves for which these are
unknown will not appear in searches specifying one of these
quantities.