Base field \(\Q(\sqrt{17}) \)
Generator \(a\), with minimal polynomial \( x^{2} - x - 4 \); class number \(1\).
Weierstrass equation
This is a global minimal model.
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$\left(-\frac{53}{4} : -\frac{39}{2} a + \frac{127}{8} : 1\right)$ | $4.0059059736515993695347146490394518930$ | $\infty$ |
$\left(-\frac{51}{4} a + \frac{43}{4} : \frac{51}{8} a - \frac{47}{8} : 1\right)$ | $0$ | $2$ |
$\left(-9 : 4 : 1\right)$ | $0$ | $2$ |
Invariants
Conductor: | $\frak{N}$ | = | \((-12a+6)\) | = | \((-a+2)\cdot(-a-1)\cdot(3)\cdot(-2a+1)\) |
sage: E.conductor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
| |||||
Conductor norm: | $N(\frak{N})$ | = | \( 612 \) | = | \(2\cdot2\cdot9\cdot17\) |
sage: E.conductor().norm()
gp: idealnorm(ellglobalred(E)[1])
magma: Norm(Conductor(E));
| |||||
Discriminant: | $\Delta$ | = | $11591221248$ | ||
Discriminant ideal: | $\frak{D}_{\mathrm{min}} = (\Delta)$ | = | \((11591221248)\) | = | \((-a+2)^{18}\cdot(-a-1)^{18}\cdot(3)^{2}\cdot(-2a+1)^{6}\) |
sage: E.discriminant()
gp: E.disc
magma: Discriminant(E);
| |||||
Discriminant norm: | $N(\frak{D}_{\mathrm{min}}) = N(\Delta)$ | = | \( 134356410020086677504 \) | = | \(2^{18}\cdot2^{18}\cdot9^{2}\cdot17^{6}\) |
sage: E.discriminant().norm()
gp: norm(E.disc)
magma: Norm(Discriminant(E));
| |||||
j-invariant: | $j$ | = | \( \frac{46753267515625}{11591221248} \) | ||
sage: E.j_invariant()
gp: E.j
magma: jInvariant(E);
| |||||
Endomorphism ring: | $\mathrm{End}(E)$ | = | \(\Z\) | ||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) | ||
sage: E.has_cm(), E.cm_discriminant()
magma: HasComplexMultiplication(E);
| |||||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | \( 1 \) |
sage: E.rank()
magma: Rank(E);
|
|||
Mordell-Weil rank: | $r$ | = | \(1\) |
Regulator: | $\mathrm{Reg}(E/K)$ | ≈ | \( 4.0059059736515993695347146490394518930 \) |
Néron-Tate Regulator: | $\mathrm{Reg}_{\mathrm{NT}}(E/K)$ | ≈ | \( 8.0118119473031987390694292980789037860 \) |
Global period: | $\Omega(E/K)$ | ≈ | \( 0.86246201079936386751463390127741536750 \) |
Tamagawa product: | $\prod_{\frak{p}}c_{\frak{p}}$ | = | \( 16 \) = \(2\cdot2\cdot2\cdot2\) |
Torsion order: | $\#E(K)_{\mathrm{tor}}$ | = | \(4\) |
Special value: | $L^{(r)}(E/K,1)/r!$ | ≈ | \( 1.6758928995864254431083541229513363505 \) |
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | \( 1 \) (rounded) |
BSD formula
$\displaystyle 1.675892900 \approx L'(E/K,1) \overset{?}{=} \frac{ \# Ш(E/K) \cdot \Omega(E/K) \cdot \mathrm{Reg}_{\mathrm{NT}}(E/K) \cdot \prod_{\mathfrak{p}} c_{\mathfrak{p}} } { \#E(K)_{\mathrm{tor}}^2 \cdot \left|d_K\right|^{1/2} } \approx \frac{ 1 \cdot 0.862462 \cdot 8.011812 \cdot 16 } { {4^2 \cdot 4.123106} } \approx 1.675892900$
Local data at primes of bad reduction
This elliptic curve is semistable. There are 4 primes $\frak{p}$ of bad reduction.
$\mathfrak{p}$ | $N(\mathfrak{p})$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{N}\)) | \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{D}_{\mathrm{min}}\)) | \(\mathrm{ord}_{\mathfrak{p}}(\mathrm{den}(j))\) |
---|---|---|---|---|---|---|---|---|
\((-a+2)\) | \(2\) | \(2\) | \(I_{18}\) | Non-split multiplicative | \(1\) | \(1\) | \(18\) | \(18\) |
\((-a-1)\) | \(2\) | \(2\) | \(I_{18}\) | Non-split multiplicative | \(1\) | \(1\) | \(18\) | \(18\) |
\((3)\) | \(9\) | \(2\) | \(I_{2}\) | Split multiplicative | \(-1\) | \(1\) | \(2\) | \(2\) |
\((-2a+1)\) | \(17\) | \(2\) | \(I_{6}\) | Non-split multiplicative | \(1\) | \(1\) | \(6\) | \(6\) |
Galois Representations
The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.
prime | Image of Galois Representation |
---|---|
\(2\) | 2Cs |
\(3\) | 3B.1.2 |
Isogenies and isogeny class
This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\)
2, 3 and 6.
Its isogeny class
612.1-l
consists of curves linked by isogenies of
degrees dividing 12.
Base change
This elliptic curve is a \(\Q\)-curve. It is the base change of the following 2 elliptic curves:
Base field | Curve |
---|---|
\(\Q\) | 102.b1 |
\(\Q\) | 1734.b1 |