Learn more

Refine search


Results (36 matches)

  Download to          
Label Class Base field Conductor norm Rank Torsion CM Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
512.1-a1 512.1-a \(\Q(\sqrt{17}) \) \( 2^{9} \) $0$ $\Z/4\Z$ $1$ $16.65604516$ 2.019842162 \( -87515172 a + 224174792 \) \( \bigl[0\) , \( -a + 1\) , \( 0\) , \( 5 a + 4\) , \( 30 a + 48\bigr] \) ${y}^2={x}^{3}+\left(-a+1\right){x}^{2}+\left(5a+4\right){x}+30a+48$
512.1-a2 512.1-a \(\Q(\sqrt{17}) \) \( 2^{9} \) $0$ $\Z/2\Z$ $1$ $16.65604516$ 2.019842162 \( 1088 a + 1728 \) \( \bigl[0\) , \( a - 1\) , \( 0\) , \( -a + 3\) , \( -2 a + 5\bigr] \) ${y}^2={x}^{3}+\left(a-1\right){x}^{2}+\left(-a+3\right){x}-2a+5$
512.1-a3 512.1-a \(\Q(\sqrt{17}) \) \( 2^{9} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $33.31209033$ 2.019842162 \( -1008 a + 18176 \) \( \bigl[0\) , \( -a + 1\) , \( 0\) , \( -5 a - 6\) , \( 10 a + 16\bigr] \) ${y}^2={x}^{3}+\left(-a+1\right){x}^{2}+\left(-5a-6\right){x}+10a+16$
512.1-a4 512.1-a \(\Q(\sqrt{17}) \) \( 2^{9} \) $0$ $\Z/2\Z$ $1$ $16.65604516$ 2.019842162 \( 53387236 a + 83370824 \) \( \bigl[0\) , \( -a + 1\) , \( 0\) , \( -75 a - 116\) , \( 546 a + 852\bigr] \) ${y}^2={x}^{3}+\left(-a+1\right){x}^{2}+\left(-75a-116\right){x}+546a+852$
512.1-b1 512.1-b \(\Q(\sqrt{17}) \) \( 2^{9} \) $1$ $\Z/2\Z$ $0.495413934$ $23.05687443$ 2.770410930 \( -6168 a + 17144 \) \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( 2 a\) , \( -a\bigr] \) ${y}^2={x}^{3}+\left(-a-1\right){x}^{2}+2a{x}-a$
512.1-b2 512.1-b \(\Q(\sqrt{17}) \) \( 2^{9} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $0.990827869$ $23.05687443$ 2.770410930 \( -240 a + 2816 \) \( \bigl[0\) , \( a + 1\) , \( 0\) , \( -9 a - 14\) , \( 0\bigr] \) ${y}^2={x}^{3}+\left(a+1\right){x}^{2}+\left(-9a-14\right){x}$
512.1-b3 512.1-b \(\Q(\sqrt{17}) \) \( 2^{9} \) $1$ $\Z/2\Z$ $1.981655739$ $5.764218608$ 2.770410930 \( -1335292 a + 3482376 \) \( \bigl[0\) , \( a + 1\) , \( 0\) , \( -79 a - 124\) , \( -648 a - 1012\bigr] \) ${y}^2={x}^{3}+\left(a+1\right){x}^{2}+\left(-79a-124\right){x}-648a-1012$
512.1-b4 512.1-b \(\Q(\sqrt{17}) \) \( 2^{9} \) $1$ $\Z/4\Z$ $0.495413934$ $11.52843721$ 2.770410930 \( 404500 a + 632528 \) \( \bigl[0\) , \( a + 1\) , \( 0\) , \( -134 a - 209\) , \( 1065 a + 1663\bigr] \) ${y}^2={x}^{3}+\left(a+1\right){x}^{2}+\left(-134a-209\right){x}+1065a+1663$
512.1-c1 512.1-c \(\Q(\sqrt{17}) \) \( 2^{9} \) $0$ $\Z/2\Z$ $1$ $15.16812741$ 1.839405631 \( -414800 a + 1062528 \) \( \bigl[0\) , \( a + 1\) , \( 0\) , \( -9 a - 14\) , \( -520 a - 812\bigr] \) ${y}^2={x}^{3}+\left(a+1\right){x}^{2}+\left(-9a-14\right){x}-520a-812$
512.1-c2 512.1-c \(\Q(\sqrt{17}) \) \( 2^{9} \) $0$ $\Z/2\Z$ $1$ $15.16812741$ 1.839405631 \( 23360 a + 35776 \) \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( -3 a - 5\) , \( -2 a - 3\bigr] \) ${y}^2={x}^{3}+\left(-a-1\right){x}^{2}+\left(-3a-5\right){x}-2a-3$
512.1-d1 512.1-d \(\Q(\sqrt{17}) \) \( 2^{9} \) $0$ $\Z/2\Z$ $1$ $8.009701860$ 1.942638047 \( -184 a + 744 \) \( \bigl[0\) , \( a - 1\) , \( 0\) , \( a + 4\) , \( -2 a - 4\bigr] \) ${y}^2={x}^{3}+\left(a-1\right){x}^{2}+\left(a+4\right){x}-2a-4$
512.1-d2 512.1-d \(\Q(\sqrt{17}) \) \( 2^{9} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $16.01940372$ 1.942638047 \( 1092 a + 4496 \) \( \bigl[0\) , \( a\) , \( 0\) , \( 9 a - 21\) , \( 8 a - 20\bigr] \) ${y}^2={x}^{3}+a{x}^{2}+\left(9a-21\right){x}+8a-20$
512.1-d3 512.1-d \(\Q(\sqrt{17}) \) \( 2^{9} \) $0$ $\Z/2\Z$ $1$ $8.009701860$ 1.942638047 \( -910322 a + 2340632 \) \( \bigl[0\) , \( a\) , \( 0\) , \( 124 a - 316\) , \( 1012 a - 2592\bigr] \) ${y}^2={x}^{3}+a{x}^{2}+\left(124a-316\right){x}+1012a-2592$
512.1-d4 512.1-d \(\Q(\sqrt{17}) \) \( 2^{9} \) $0$ $\Z/2\Z$ $1$ $8.009701860$ 1.942638047 \( 10297338 a + 16114448 \) \( \bigl[0\) , \( a\) , \( 0\) , \( 59 a - 151\) , \( -378 a + 966\bigr] \) ${y}^2={x}^{3}+a{x}^{2}+\left(59a-151\right){x}-378a+966$
512.1-e1 512.1-e \(\Q(\sqrt{17}) \) \( 2^{9} \) $0$ $\Z/2\Z$ $1$ $6.239280630$ 1.513247827 \( \frac{217}{16} a - \frac{139}{4} \) \( \bigl[0\) , \( 1\) , \( 0\) , \( 0\) , \( 8 a + 12\bigr] \) ${y}^2={x}^{3}+{x}^{2}+8a+12$
512.1-e2 512.1-e \(\Q(\sqrt{17}) \) \( 2^{9} \) $0$ $\Z/2\Z$ $1$ $3.119640315$ 1.513247827 \( -\frac{23841914775}{2} a + 30536164178 \) \( \bigl[0\) , \( -1\) , \( 0\) , \( -768 a - 1200\) , \( -7764 a - 12124\bigr] \) ${y}^2={x}^{3}-{x}^{2}+\left(-768a-1200\right){x}-7764a-12124$
512.1-e3 512.1-e \(\Q(\sqrt{17}) \) \( 2^{9} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $12.47856126$ 1.513247827 \( -\frac{159495}{4} a + 160181 \) \( \bigl[0\) , \( a + 1\) , \( 0\) , \( 71 a - 178\) , \( 444 a - 1136\bigr] \) ${y}^2={x}^{3}+\left(a+1\right){x}^{2}+\left(71a-178\right){x}+444a-1136$
512.1-e4 512.1-e \(\Q(\sqrt{17}) \) \( 2^{9} \) $0$ $\Z/4\Z$ $1$ $12.47856126$ 1.513247827 \( \frac{1592342311}{2} a + 1243265046 \) \( \bigl[0\) , \( a + 1\) , \( 0\) , \( 106 a - 273\) , \( -87 a + 223\bigr] \) ${y}^2={x}^{3}+\left(a+1\right){x}^{2}+\left(106a-273\right){x}-87a+223$
512.1-f1 512.1-f \(\Q(\sqrt{17}) \) \( 2^{9} \) $1$ $\Z/2\Z$ $0.235830817$ $12.22307372$ 2.796510914 \( \frac{217}{16} a - \frac{139}{4} \) \( \bigl[0\) , \( -a + 1\) , \( 0\) , \( 5 a - 12\) , \( -50 a + 128\bigr] \) ${y}^2={x}^{3}+\left(-a+1\right){x}^{2}+\left(5a-12\right){x}-50a+128$
512.1-f2 512.1-f \(\Q(\sqrt{17}) \) \( 2^{9} \) $1$ $\Z/2\Z$ $0.943323270$ $12.22307372$ 2.796510914 \( -\frac{23841914775}{2} a + 30536164178 \) \( \bigl[0\) , \( a - 1\) , \( 0\) , \( 5 a - 60\) , \( -90 a + 144\bigr] \) ${y}^2={x}^{3}+\left(a-1\right){x}^{2}+\left(5a-60\right){x}-90a+144$
512.1-f3 512.1-f \(\Q(\sqrt{17}) \) \( 2^{9} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $0.471661635$ $24.44614744$ 2.796510914 \( -\frac{159495}{4} a + 160181 \) \( \bigl[0\) , \( a - 1\) , \( 0\) , \( -5 a - 10\) , \( 6 a + 16\bigr] \) ${y}^2={x}^{3}+\left(a-1\right){x}^{2}+\left(-5a-10\right){x}+6a+16$
512.1-f4 512.1-f \(\Q(\sqrt{17}) \) \( 2^{9} \) $1$ $\Z/2\Z$ $0.235830817$ $12.22307372$ 2.796510914 \( \frac{1592342311}{2} a + 1243265046 \) \( \bigl[0\) , \( a - 1\) , \( 0\) , \( -90 a - 145\) , \( 633 a + 993\bigr] \) ${y}^2={x}^{3}+\left(a-1\right){x}^{2}+\left(-90a-145\right){x}+633a+993$
512.1-g1 512.1-g \(\Q(\sqrt{17}) \) \( 2^{9} \) $1$ $\Z/2\Z$ $1.156172055$ $9.650305188$ 2.706070181 \( -184 a + 744 \) \( \bigl[0\) , \( a + 1\) , \( 0\) , \( -3 a + 12\) , \( -4 a + 12\bigr] \) ${y}^2={x}^{3}+\left(a+1\right){x}^{2}+\left(-3a+12\right){x}-4a+12$
512.1-g2 512.1-g \(\Q(\sqrt{17}) \) \( 2^{9} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $0.578086027$ $19.30061037$ 2.706070181 \( 1092 a + 4496 \) \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( -a - 2\) , \( 0\bigr] \) ${y}^2={x}^{3}+\left(-a-1\right){x}^{2}+\left(-a-2\right){x}$
512.1-g3 512.1-g \(\Q(\sqrt{17}) \) \( 2^{9} \) $1$ $\Z/4\Z$ $0.289043013$ $19.30061037$ 2.706070181 \( -910322 a + 2340632 \) \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( -6 a - 17\) , \( 27 a + 49\bigr] \) ${y}^2={x}^{3}+\left(-a-1\right){x}^{2}+\left(-6a-17\right){x}+27a+49$
512.1-g4 512.1-g \(\Q(\sqrt{17}) \) \( 2^{9} \) $1$ $\Z/2\Z$ $1.156172055$ $4.825152594$ 2.706070181 \( 10297338 a + 16114448 \) \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( -31 a - 52\) , \( -108 a - 172\bigr] \) ${y}^2={x}^{3}+\left(-a-1\right){x}^{2}+\left(-31a-52\right){x}-108a-172$
512.1-h1 512.1-h \(\Q(\sqrt{17}) \) \( 2^{9} \) $1$ $\Z/2\Z$ $1.636612390$ $6.640608214$ 2.635901835 \( -414800 a + 1062528 \) \( \bigl[0\) , \( -a\) , \( 0\) , \( a - 1\) , \( -4\bigr] \) ${y}^2={x}^{3}-a{x}^{2}+\left(a-1\right){x}-4$
512.1-h2 512.1-h \(\Q(\sqrt{17}) \) \( 2^{9} \) $1$ $\Z/2\Z$ $0.818306195$ $6.640608214$ 2.635901835 \( 23360 a + 35776 \) \( \bigl[0\) , \( a\) , \( 0\) , \( 7 a - 16\) , \( 22 a - 56\bigr] \) ${y}^2={x}^{3}+a{x}^{2}+\left(7a-16\right){x}+22a-56$
512.1-i1 512.1-i \(\Q(\sqrt{17}) \) \( 2^{9} \) $1$ $\Z/2\Z$ $1.598568471$ $14.24941430$ 2.762318808 \( -6168 a + 17144 \) \( \bigl[0\) , \( -a + 1\) , \( 0\) , \( 14 a + 24\) , \( 15 a + 24\bigr] \) ${y}^2={x}^{3}+\left(-a+1\right){x}^{2}+\left(14a+24\right){x}+15a+24$
512.1-i2 512.1-i \(\Q(\sqrt{17}) \) \( 2^{9} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $0.799284235$ $28.49882861$ 2.762318808 \( -240 a + 2816 \) \( \bigl[0\) , \( -a\) , \( 0\) , \( a - 1\) , \( 0\bigr] \) ${y}^2={x}^{3}-a{x}^{2}+\left(a-1\right){x}$
512.1-i3 512.1-i \(\Q(\sqrt{17}) \) \( 2^{9} \) $1$ $\Z/2\Z$ $0.399642117$ $14.24941430$ 2.762318808 \( -1335292 a + 3482376 \) \( \bigl[0\) , \( -a\) , \( 0\) , \( 11 a - 31\) , \( -26 a + 66\bigr] \) ${y}^2={x}^{3}-a{x}^{2}+\left(11a-31\right){x}-26a+66$
512.1-i4 512.1-i \(\Q(\sqrt{17}) \) \( 2^{9} \) $1$ $\Z/4\Z$ $0.399642117$ $14.24941430$ 2.762318808 \( 404500 a + 632528 \) \( \bigl[0\) , \( -a\) , \( 0\) , \( -4 a + 4\) , \( 16\bigr] \) ${y}^2={x}^{3}-a{x}^{2}+\left(-4a+4\right){x}+16$
512.1-j1 512.1-j \(\Q(\sqrt{17}) \) \( 2^{9} \) $0$ $\Z/2\Z$ $1$ $5.311277067$ 1.288173903 \( -87515172 a + 224174792 \) \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( 97 a - 244\) , \( 752 a - 1928\bigr] \) ${y}^2={x}^{3}+\left(-a-1\right){x}^{2}+\left(97a-244\right){x}+752a-1928$
512.1-j2 512.1-j \(\Q(\sqrt{17}) \) \( 2^{9} \) $0$ $\Z/2\Z$ $1$ $10.62255413$ 1.288173903 \( 1088 a + 1728 \) \( \bigl[0\) , \( -1\) , \( 0\) , \( -6 a - 9\) , \( -7 a - 11\bigr] \) ${y}^2={x}^{3}-{x}^{2}+\left(-6a-9\right){x}-7a-11$
512.1-j3 512.1-j \(\Q(\sqrt{17}) \) \( 2^{9} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $21.24510827$ 1.288173903 \( -1008 a + 18176 \) \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( 7 a - 14\) , \( 12 a - 32\bigr] \) ${y}^2={x}^{3}+\left(-a-1\right){x}^{2}+\left(7a-14\right){x}+12a-32$
512.1-j4 512.1-j \(\Q(\sqrt{17}) \) \( 2^{9} \) $0$ $\Z/4\Z$ $1$ $21.24510827$ 1.288173903 \( 53387236 a + 83370824 \) \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( 17 a - 44\) , \( -36 a + 100\bigr] \) ${y}^2={x}^{3}+\left(-a-1\right){x}^{2}+\left(17a-44\right){x}-36a+100$
  Download to          

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.