Properties

Label 2.2.17.1-324.1-e10
Base field \(\Q(\sqrt{17}) \)
Conductor \((18)\)
Conductor norm \( 324 \)
CM no
Base change no
Q-curve yes
Torsion order \( 12 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Base field \(\Q(\sqrt{17}) \)

Generator \(a\), with minimal polynomial \( x^{2} - x - 4 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-4, -1, 1]))
 
gp: K = nfinit(Pol(Vecrev([-4, -1, 1])));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-4, -1, 1]);
 

Weierstrass equation

\({y}^2+{x}{y}+{y}={x}^{3}-{x}^{2}+\left(-549a-872\right){x}+10282a+16079\)
sage: E = EllipticCurve([K([1,0]),K([-1,0]),K([1,0]),K([-872,-549]),K([16079,10282])])
 
gp: E = ellinit([Pol(Vecrev([1,0])),Pol(Vecrev([-1,0])),Pol(Vecrev([1,0])),Pol(Vecrev([-872,-549])),Pol(Vecrev([16079,10282]))], K);
 
magma: E := EllipticCurve([K![1,0],K![-1,0],K![1,0],K![-872,-549],K![16079,10282]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((18)\) = \((-a+2)\cdot(-a-1)\cdot(3)^{2}\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 324 \) = \(2\cdot2\cdot9^{2}\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((233280a+186624)\) = \((-a+2)^{12}\cdot(-a-1)^{6}\cdot(3)^{6}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 139314069504 \) = \(2^{12}\cdot2^{6}\cdot9^{6}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{203862548967}{4096} a + \frac{318403919021}{4096} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\times\Z/6\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generators: $\left(\frac{25}{4} a + \frac{47}{4} : -\frac{25}{8} a - \frac{51}{8} : 1\right)$ $\left(4 a + 17 : 7 a - 27 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 7.89115890312319 \)
Tamagawa product: \( 288 \)  =  \(( 2^{2} \cdot 3 )\cdot( 2 \cdot 3 )\cdot2^{2}\)
Torsion order: \(12\)
Leading coefficient: \( 3.82777431366001 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-a+2)\) \(2\) \(12\) \(I_{12}\) Split multiplicative \(-1\) \(1\) \(12\) \(12\)
\((-a-1)\) \(2\) \(6\) \(I_{6}\) Split multiplicative \(-1\) \(1\) \(6\) \(6\)
\((3)\) \(9\) \(4\) \(I_0^{*}\) Additive \(1\) \(2\) \(6\) \(0\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2Cs
\(3\) 3B.1.1

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 3, 4, 6 and 12.
Its isogeny class 324.1-e consists of curves linked by isogenies of degrees dividing 24.

Base change

This curve is not the base change of an elliptic curve defined over \(\Q\). It is a \(\Q\)-curve.