Label |
Class |
Class size |
Class degree |
Base field |
Field degree |
Field signature |
Conductor |
Conductor norm |
Discriminant norm |
Root analytic conductor |
Bad primes |
Rank |
Torsion |
CM |
CM |
Sato-Tate |
$\Q$-curve |
Base change |
Semistable |
Potentially good |
Nonmax $\ell$ |
mod-$\ell$ images |
$Ш_{\textrm{an}}$ |
Tamagawa |
Regulator |
Period |
Leading coeff |
j-invariant |
Weierstrass coefficients |
Weierstrass equation |
32.4-a1 |
32.4-a |
$12$ |
$24$ |
\(\Q(\sqrt{17}) \) |
$2$ |
$[2, 0]$ |
32.4 |
\( 2^{5} \) |
\( 2^{39} \) |
$0.87630$ |
$(-a+2), (-a-1)$ |
$0$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2, 3$ |
2B, 3B |
$1$ |
\( 2^{2} \cdot 3 \) |
$1$ |
$1.942891550$ |
1.413661249 |
\( -\frac{55573026649}{16777216} a - \frac{85738862931}{16777216} \) |
\( \bigl[a\) , \( -1\) , \( a\) , \( -23 a + 52\) , \( -405 a + 1032\bigr] \) |
${y}^2+a{x}{y}+a{y}={x}^{3}-{x}^{2}+\left(-23a+52\right){x}-405a+1032$ |
32.4-a2 |
32.4-a |
$12$ |
$24$ |
\(\Q(\sqrt{17}) \) |
$2$ |
$[2, 0]$ |
32.4 |
\( 2^{5} \) |
\( 2^{21} \) |
$0.87630$ |
$(-a+2), (-a-1)$ |
$0$ |
$\Z/8\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2, 3$ |
2B, 3B |
$1$ |
\( 2^{5} \) |
$1$ |
$11.65734930$ |
1.413661249 |
\( -\frac{110887}{256} a + \frac{66933}{64} \) |
\( \bigl[a\) , \( -1\) , \( a\) , \( -7 a - 12\) , \( 67 a + 104\bigr] \) |
${y}^2+a{x}{y}+a{y}={x}^{3}-{x}^{2}+\left(-7a-12\right){x}+67a+104$ |
32.4-a3 |
32.4-a |
$12$ |
$24$ |
\(\Q(\sqrt{17}) \) |
$2$ |
$[2, 0]$ |
32.4 |
\( 2^{5} \) |
\( 2^{39} \) |
$0.87630$ |
$(-a+2), (-a-1)$ |
$0$ |
$\Z/8\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2, 3$ |
2B, 3B |
$1$ |
\( 2^{5} \cdot 3 \) |
$1$ |
$3.885783100$ |
1.413661249 |
\( \frac{55573026649}{16777216} a - \frac{35327972395}{4194304} \) |
\( \bigl[a\) , \( -1\) , \( a\) , \( 58 a + 88\) , \( -1783 a - 2784\bigr] \) |
${y}^2+a{x}{y}+a{y}={x}^{3}-{x}^{2}+\left(58a+88\right){x}-1783a-2784$ |
32.4-a4 |
32.4-a |
$12$ |
$24$ |
\(\Q(\sqrt{17}) \) |
$2$ |
$[2, 0]$ |
32.4 |
\( 2^{5} \) |
\( 2^{21} \) |
$0.87630$ |
$(-a+2), (-a-1)$ |
$0$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2, 3$ |
2B, 3B |
$1$ |
\( 2^{2} \) |
$1$ |
$5.828674651$ |
1.413661249 |
\( \frac{110887}{256} a + \frac{156845}{256} \) |
\( \bigl[a\) , \( -1\) , \( a\) , \( 2 a - 8\) , \( 15 a - 40\bigr] \) |
${y}^2+a{x}{y}+a{y}={x}^{3}-{x}^{2}+\left(2a-8\right){x}+15a-40$ |
32.4-a5 |
32.4-a |
$12$ |
$24$ |
\(\Q(\sqrt{17}) \) |
$2$ |
$[2, 0]$ |
32.4 |
\( 2^{5} \) |
\( 2^{18} \) |
$0.87630$ |
$(-a+2), (-a-1)$ |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2, 3$ |
2Cs, 3B |
$1$ |
\( 2^{3} \) |
$1$ |
$11.65734930$ |
1.413661249 |
\( -\frac{915957}{16} a + \frac{2374013}{16} \) |
\( \bigl[a\) , \( 1\) , \( a\) , \( -7 a - 12\) , \( -7 a - 12\bigr] \) |
${y}^2+a{x}{y}+a{y}={x}^{3}+{x}^{2}+\left(-7a-12\right){x}-7a-12$ |
32.4-a6 |
32.4-a |
$12$ |
$24$ |
\(\Q(\sqrt{17}) \) |
$2$ |
$[2, 0]$ |
32.4 |
\( 2^{5} \) |
\( 2^{21} \) |
$0.87630$ |
$(-a+2), (-a-1)$ |
$0$ |
$\Z/4\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2, 3$ |
2B, 3B |
$1$ |
\( 2^{2} \cdot 3 \) |
$1$ |
$7.771566201$ |
1.413661249 |
\( -\frac{653762688677050897}{64} a + \frac{418661913522614865}{16} \) |
\( \bigl[a\) , \( a\) , \( a\) , \( 2388 a - 6147\) , \( -92365 a + 236610\bigr] \) |
${y}^2+a{x}{y}+a{y}={x}^{3}+a{x}^{2}+\left(2388a-6147\right){x}-92365a+236610$ |
32.4-a7 |
32.4-a |
$12$ |
$24$ |
\(\Q(\sqrt{17}) \) |
$2$ |
$[2, 0]$ |
32.4 |
\( 2^{5} \) |
\( 2^{30} \) |
$0.87630$ |
$(-a+2), (-a-1)$ |
$0$ |
$\Z/2\Z\oplus\Z/4\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2, 3$ |
2Cs, 3B |
$1$ |
\( 2^{4} \cdot 3 \) |
$1$ |
$7.771566201$ |
1.413661249 |
\( -\frac{203862548967}{4096} a + \frac{130566616997}{1024} \) |
\( \bigl[a\) , \( a\) , \( a\) , \( 148 a - 387\) , \( -1485 a + 3778\bigr] \) |
${y}^2+a{x}{y}+a{y}={x}^{3}+a{x}^{2}+\left(148a-387\right){x}-1485a+3778$ |
32.4-a8 |
32.4-a |
$12$ |
$24$ |
\(\Q(\sqrt{17}) \) |
$2$ |
$[2, 0]$ |
32.4 |
\( 2^{5} \) |
\( 2^{18} \) |
$0.87630$ |
$(-a+2), (-a-1)$ |
$0$ |
$\Z/2\Z\oplus\Z/4\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2, 3$ |
2Cs, 3B |
$1$ |
\( 2^{4} \) |
$1$ |
$23.31469860$ |
1.413661249 |
\( \frac{915957}{16} a + \frac{182257}{2} \) |
\( \bigl[a\) , \( a\) , \( a\) , \( 3 a - 7\) , \( -a + 2\bigr] \) |
${y}^2+a{x}{y}+a{y}={x}^{3}+a{x}^{2}+\left(3a-7\right){x}-a+2$ |
32.4-a9 |
32.4-a |
$12$ |
$24$ |
\(\Q(\sqrt{17}) \) |
$2$ |
$[2, 0]$ |
32.4 |
\( 2^{5} \) |
\( 2^{15} \) |
$0.87630$ |
$(-a+2), (-a-1)$ |
$0$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2, 3$ |
2B, 3B |
$4$ |
\( 2 \) |
$1$ |
$2.914337325$ |
1.413661249 |
\( -\frac{54503407609}{4} a + \frac{139614751755}{4} \) |
\( \bigl[a\) , \( 1\) , \( a\) , \( -77 a - 132\) , \( -619 a - 988\bigr] \) |
${y}^2+a{x}{y}+a{y}={x}^{3}+{x}^{2}+\left(-77a-132\right){x}-619a-988$ |
32.4-a10 |
32.4-a |
$12$ |
$24$ |
\(\Q(\sqrt{17}) \) |
$2$ |
$[2, 0]$ |
32.4 |
\( 2^{5} \) |
\( 2^{30} \) |
$0.87630$ |
$(-a+2), (-a-1)$ |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2, 3$ |
2Cs, 3B |
$1$ |
\( 2^{3} \cdot 3 \) |
$1$ |
$3.885783100$ |
1.413661249 |
\( \frac{203862548967}{4096} a + \frac{318403919021}{4096} \) |
\( \bigl[a\) , \( 1\) , \( a\) , \( -402 a - 632\) , \( -6673 a - 10420\bigr] \) |
${y}^2+a{x}{y}+a{y}={x}^{3}+{x}^{2}+\left(-402a-632\right){x}-6673a-10420$ |
32.4-a11 |
32.4-a |
$12$ |
$24$ |
\(\Q(\sqrt{17}) \) |
$2$ |
$[2, 0]$ |
32.4 |
\( 2^{5} \) |
\( 2^{15} \) |
$0.87630$ |
$(-a+2), (-a-1)$ |
$0$ |
$\Z/4\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2, 3$ |
2B, 3B |
$1$ |
\( 2^{2} \) |
$1$ |
$23.31469860$ |
1.413661249 |
\( \frac{54503407609}{4} a + \frac{42555672073}{2} \) |
\( \bigl[a\) , \( a\) , \( a\) , \( 23 a - 87\) , \( -129 a + 354\bigr] \) |
${y}^2+a{x}{y}+a{y}={x}^{3}+a{x}^{2}+\left(23a-87\right){x}-129a+354$ |
32.4-a12 |
32.4-a |
$12$ |
$24$ |
\(\Q(\sqrt{17}) \) |
$2$ |
$[2, 0]$ |
32.4 |
\( 2^{5} \) |
\( 2^{21} \) |
$0.87630$ |
$(-a+2), (-a-1)$ |
$0$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2, 3$ |
2B, 3B |
$4$ |
\( 2 \cdot 3 \) |
$1$ |
$0.971445775$ |
1.413661249 |
\( \frac{653762688677050897}{64} a + \frac{1020884965413408563}{64} \) |
\( \bigl[a\) , \( 1\) , \( a\) , \( -6442 a - 10072\) , \( -410033 a - 640308\bigr] \) |
${y}^2+a{x}{y}+a{y}={x}^{3}+{x}^{2}+\left(-6442a-10072\right){x}-410033a-640308$ |
*The rank, regulator and analytic order of Ш are
not known for all curves in the database; curves for which these are
unknown will not appear in searches specifying one of these
quantities.