Properties

Label 2.2.168.1-21.1-a6
Base field \(\Q(\sqrt{42}) \)
Conductor norm \( 21 \)
CM no
Base change yes
Q-curve yes
Torsion order \( 2 \)
Rank \( 2 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{42}) \)

Generator \(a\), with minimal polynomial \( x^{2} - 42 \); class number \(2\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-42, 0, 1]))
 
gp: K = nfinit(Polrev([-42, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-42, 0, 1]);
 

Weierstrass equation

\({y}^2+a{x}{y}+a{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-109913455a-712320537\right){x}-1596914887554a-10349191303524\)
sage: E = EllipticCurve([K([0,1]),K([-1,-1]),K([0,1]),K([-712320537,-109913455]),K([-10349191303524,-1596914887554])])
 
gp: E = ellinit([Polrev([0,1]),Polrev([-1,-1]),Polrev([0,1]),Polrev([-712320537,-109913455]),Polrev([-10349191303524,-1596914887554])], K);
 
magma: E := EllipticCurve([K![0,1],K![-1,-1],K![0,1],K![-712320537,-109913455],K![-10349191303524,-1596914887554]]);
 

This is not a global minimal model: it is minimal at all primes except \((2,a)\). No global minimal model exists.

sage: E.is_global_minimal_model()
 

Mordell-Weil group structure

\(\Z \oplus \Z \oplus \Z/{2}\Z\)

Mordell-Weil generators

$P$$\hat{h}(P)$Order
$\left(-\frac{11769}{7} a - \frac{76281}{7} : \frac{266307}{49} a + \frac{246489}{7} : 1\right)$$4.5894693860189874835204055663345055832$$\infty$
$\left(-\frac{485823}{289} a - \frac{3149847}{289} : \frac{26740327}{4913} a + \frac{173235951}{4913} : 1\right)$$4.5894693860189874835204055663345055832$$\infty$
$\left(-1681 a - \frac{21799}{2} : \frac{21797}{4} a + 35301 : 1\right)$$0$$2$

Invariants

Conductor: $\frak{N}$ = \((21,a)\) = \((3,a)\cdot(a+7)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: $N(\frak{N})$ = \( 21 \) = \(3\cdot7\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: $\Delta$ = $9408$
Discriminant ideal: $(\Delta)$ = \((9408)\) = \((2,a)^{12}\cdot(3,a)^{2}\cdot(a+7)^{4}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: $N(\Delta)$ = \( 88510464 \) = \(2^{12}\cdot3^{2}\cdot7^{4}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
Minimal discriminant: $\frak{D}_{\mathrm{min}}$ = \((147)\) = \((3,a)^{2}\cdot(a+7)^{4}\)
Minimal discriminant norm: $N(\frak{D}_{\mathrm{min}})$ = \( 21609 \) = \(3^{2}\cdot7^{4}\)
j-invariant: $j$ = \( \frac{53297461115137}{147} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: $\mathrm{End}(E)$ = \(\Z\)   
Geometric endomorphism ring: $\mathrm{End}(E_{\overline{\Q}})$ = \(\Z\)    (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{ST}(E)$ = $\mathrm{SU}(2)$

BSD invariants

Analytic rank: $r_{\mathrm{an}}$= \( 2 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: $r$ = \(2\)
Regulator: $\mathrm{Reg}(E/K)$ \( 20.590506635033623088289610169993403362 \)
Néron-Tate Regulator: $\mathrm{Reg}_{\mathrm{NT}}(E/K)$ \( 82.362026540134492353158440679973613448 \)
Global period: $\Omega(E/K)$ \( 0.81402043591529410859009812409796429515 \)
Tamagawa product: $\prod_{\frak{p}}c_{\frak{p}}$= \( 4 \)  =  \(1\cdot2\cdot2\)
Torsion order: $\#E(K)_{\mathrm{tor}}$= \(2\)
Special value: $L^{(r)}(E/K,1)/r!$ \( 5.1725856554898316444931419813893222316 \)
Analytic order of Ш: Ш${}_{\mathrm{an}}$= \( 1 \) (rounded)

BSD formula

$\displaystyle 5.172585655 \approx L^{(2)}(E/K,1)/2! \overset{?}{=} \frac{ \# Ш(E/K) \cdot \Omega(E/K) \cdot \mathrm{Reg}_{\mathrm{NT}}(E/K) \cdot \prod_{\mathfrak{p}} c_{\mathfrak{p}} } { \#E(K)_{\mathrm{tor}}^2 \cdot \left|d_K\right|^{1/2} } \approx \frac{ 1 \cdot 0.814020 \cdot 82.362027 \cdot 4 } { {2^2 \cdot 12.961481} } \approx 5.172585655$

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 

This elliptic curve is semistable. There are 2 primes $\frak{p}$ of bad reduction. Primes of good reduction for the curve but which divide the discriminant of the model above (if any) are included.

$\mathfrak{p}$ $N(\mathfrak{p})$ Tamagawa number Kodaira symbol Reduction type Root number \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{N}\)) \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{D}_{\mathrm{min}}\)) \(\mathrm{ord}_{\mathfrak{p}}(\mathrm{den}(j))\)
\((2,a)\) \(2\) \(1\) \(I_0\) Good \(1\) \(0\) \(0\) \(0\)
\((3,a)\) \(3\) \(2\) \(I_{2}\) Non-split multiplicative \(1\) \(1\) \(2\) \(2\)
\((a+7)\) \(7\) \(2\) \(I_{4}\) Non-split multiplicative \(1\) \(1\) \(4\) \(4\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 4 and 8.
Its isogeny class 21.1-a consists of curves linked by isogenies of degrees dividing 8.

Base change

This elliptic curve is a \(\Q\)-curve. It is the base change of the following 2 elliptic curves:

Base field Curve
\(\Q\) 441.f1
\(\Q\) 1344.g1