Properties

Label 2.2.168.1-21.1-a3
Base field \(\Q(\sqrt{42}) \)
Conductor norm \( 21 \)
CM no
Base change yes
Q-curve yes
Torsion order \( 4 \)
Rank \( 2 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{42}) \)

Generator \(a\), with minimal polynomial \( x^{2} - 42 \); class number \(2\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-42, 0, 1]))
 
gp: K = nfinit(Polrev([-42, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-42, 0, 1]);
 

Weierstrass equation

\({y}^2+a{x}{y}+a{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-563695a-3653097\right){x}-126334194a-818739012\)
sage: E = EllipticCurve([K([0,1]),K([-1,-1]),K([0,1]),K([-3653097,-563695]),K([-818739012,-126334194])])
 
gp: E = ellinit([Polrev([0,1]),Polrev([-1,-1]),Polrev([0,1]),Polrev([-3653097,-563695]),Polrev([-818739012,-126334194])], K);
 
magma: E := EllipticCurve([K![0,1],K![-1,-1],K![0,1],K![-3653097,-563695],K![-818739012,-126334194]]);
 

This is not a global minimal model: it is minimal at all primes except \((2,a)\). No global minimal model exists.

sage: E.is_global_minimal_model()
 

Mordell-Weil group structure

\(\Z \oplus \Z \oplus \Z/{2}\Z \oplus \Z/{2}\Z\)

Mordell-Weil generators

$P$$\hat{h}(P)$Order
$\left(451 a + \frac{5835}{2} : \frac{115663}{4} a + \frac{374763}{2} : 1\right)$$1.9509605628848293086349021762747143170$$\infty$
$\left(\frac{677}{3} a + \frac{8743}{6} : -\frac{148733}{36} a - 26789 : 1\right)$$2.6385088231341581748855033900597912662$$\infty$
$\left(-199 a - 1295 : 647 a + 4179 : 1\right)$$0$$2$
$\left(-17 a - \frac{231}{2} : \frac{229}{4} a + 357 : 1\right)$$0$$2$

Invariants

Conductor: $\frak{N}$ = \((21,a)\) = \((3,a)\cdot(a+7)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: $N(\frak{N})$ = \( 21 \) = \(3\cdot7\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: $\Delta$ = $254016$
Discriminant ideal: $(\Delta)$ = \((254016)\) = \((2,a)^{12}\cdot(3,a)^{8}\cdot(a+7)^{4}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: $N(\Delta)$ = \( 64524128256 \) = \(2^{12}\cdot3^{8}\cdot7^{4}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
Minimal discriminant: $\frak{D}_{\mathrm{min}}$ = \((3969)\) = \((3,a)^{8}\cdot(a+7)^{4}\)
Minimal discriminant norm: $N(\frak{D}_{\mathrm{min}})$ = \( 15752961 \) = \(3^{8}\cdot7^{4}\)
j-invariant: $j$ = \( \frac{7189057}{3969} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: $\mathrm{End}(E)$ = \(\Z\)   
Geometric endomorphism ring: $\mathrm{End}(E_{\overline{\Q}})$ = \(\Z\)    (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{ST}(E)$ = $\mathrm{SU}(2)$

BSD invariants

Analytic rank: $r_{\mathrm{an}}$= \( 2 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: $r$ = \(2\)
Regulator: $\mathrm{Reg}(E/K)$ \( 5.1476266587584057720724025424983508405 \)
Néron-Tate Regulator: $\mathrm{Reg}_{\mathrm{NT}}(E/K)$ \( 20.590506635033623088289610169993403362 \)
Global period: $\Omega(E/K)$ \( 13.024326974644705737441569985567428722 \)
Tamagawa product: $\prod_{\frak{p}}c_{\frak{p}}$= \( 4 \)  =  \(1\cdot2\cdot2\)
Torsion order: $\#E(K)_{\mathrm{tor}}$= \(4\)
Special value: $L^{(r)}(E/K,1)/r!$ \( 5.1725856554898316444931419813893222316 \)
Analytic order of Ш: Ш${}_{\mathrm{an}}$= \( 1 \) (rounded)

BSD formula

$\displaystyle 5.172585655 \approx L^{(2)}(E/K,1)/2! \overset{?}{=} \frac{ \# Ш(E/K) \cdot \Omega(E/K) \cdot \mathrm{Reg}_{\mathrm{NT}}(E/K) \cdot \prod_{\mathfrak{p}} c_{\mathfrak{p}} } { \#E(K)_{\mathrm{tor}}^2 \cdot \left|d_K\right|^{1/2} } \approx \frac{ 1 \cdot 13.024327 \cdot 20.590507 \cdot 4 } { {4^2 \cdot 12.961481} } \approx 5.172585655$

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 

This elliptic curve is semistable. There are 2 primes $\frak{p}$ of bad reduction. Primes of good reduction for the curve but which divide the discriminant of the model above (if any) are included.

$\mathfrak{p}$ $N(\mathfrak{p})$ Tamagawa number Kodaira symbol Reduction type Root number \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{N}\)) \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{D}_{\mathrm{min}}\)) \(\mathrm{ord}_{\mathfrak{p}}(\mathrm{den}(j))\)
\((2,a)\) \(2\) \(1\) \(I_0\) Good \(1\) \(0\) \(0\) \(0\)
\((3,a)\) \(3\) \(2\) \(I_{8}\) Non-split multiplicative \(1\) \(1\) \(8\) \(8\)
\((a+7)\) \(7\) \(2\) \(I_{4}\) Non-split multiplicative \(1\) \(1\) \(4\) \(4\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2Cs

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2 and 4.
Its isogeny class 21.1-a consists of curves linked by isogenies of degrees dividing 8.

Base change

This elliptic curve is a \(\Q\)-curve. It is the base change of the following 2 elliptic curves:

Base field Curve
\(\Q\) 441.f5
\(\Q\) 1344.g5