Base field \(\Q(\sqrt{42}) \)
Generator \(a\), with minimal polynomial \( x^{2} - 42 \); class number \(2\).
Weierstrass equation
This is not a global minimal model: it is minimal at all primes except \((2,a)\). No global minimal model exists.
Mordell-Weil group structure
\(\Z \oplus \Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$\left(425 a + 2749 : 31025 a + 201051 : 1\right)$ | $0.97548028144241465431745108813735715849$ | $\infty$ |
$\left(\frac{443}{3} a + \frac{2855}{3} : -\frac{74279}{9} a - 53501 : 1\right)$ | $1.3192544115670790874427516950298956331$ | $\infty$ |
$\left(9 a + 53 : -27 a - 189 : 1\right)$ | $0$ | $2$ |
Invariants
Conductor: | $\frak{N}$ | = | \((21,a)\) | = | \((3,a)\cdot(a+7)\) |
sage: E.conductor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
| |||||
Conductor norm: | $N(\frak{N})$ | = | \( 21 \) | = | \(3\cdot7\) |
sage: E.conductor().norm()
gp: idealnorm(ellglobalred(E)[1])
magma: Norm(Conductor(E));
| |||||
Discriminant: | $\Delta$ | = | $-4032$ | ||
Discriminant ideal: | $(\Delta)$ | = | \((-4032)\) | = | \((2,a)^{12}\cdot(3,a)^{4}\cdot(a+7)^{2}\) |
sage: E.discriminant()
gp: E.disc
magma: Discriminant(E);
| |||||
Discriminant norm: | $N(\Delta)$ | = | \( 16257024 \) | = | \(2^{12}\cdot3^{4}\cdot7^{2}\) |
sage: E.discriminant().norm()
gp: norm(E.disc)
magma: Norm(Discriminant(E));
| |||||
Minimal discriminant: | $\frak{D}_{\mathrm{min}}$ | = | \((63)\) | = | \((3,a)^{4}\cdot(a+7)^{2}\) |
Minimal discriminant norm: | $N(\frak{D}_{\mathrm{min}})$ | = | \( 3969 \) | = | \(3^{4}\cdot7^{2}\) |
j-invariant: | $j$ | = | \( \frac{103823}{63} \) | ||
sage: E.j_invariant()
gp: E.j
magma: jInvariant(E);
| |||||
Endomorphism ring: | $\mathrm{End}(E)$ | = | \(\Z\) | ||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) | ||
sage: E.has_cm(), E.cm_discriminant()
magma: HasComplexMultiplication(E);
| |||||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | \( 2 \) |
sage: E.rank()
magma: Rank(E);
|
|||
Mordell-Weil rank: | $r$ | = | \(2\) |
Regulator: | $\mathrm{Reg}(E/K)$ | ≈ | \( 1.2869066646896014430181006356245877101 \) |
Néron-Tate Regulator: | $\mathrm{Reg}_{\mathrm{NT}}(E/K)$ | ≈ | \( 5.1476266587584057720724025424983508404 \) |
Global period: | $\Omega(E/K)$ | ≈ | \( 13.024326974644705737441569985567428722 \) |
Tamagawa product: | $\prod_{\frak{p}}c_{\frak{p}}$ | = | \( 4 \) = \(1\cdot2\cdot2\) |
Torsion order: | $\#E(K)_{\mathrm{tor}}$ | = | \(2\) |
Special value: | $L^{(r)}(E/K,1)/r!$ | ≈ | \( 5.1725856554898316444931419813893222316 \) |
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | \( 1 \) (rounded) |
BSD formula
$\displaystyle 5.172585655 \approx L^{(2)}(E/K,1)/2! \overset{?}{=} \frac{ \# Ш(E/K) \cdot \Omega(E/K) \cdot \mathrm{Reg}_{\mathrm{NT}}(E/K) \cdot \prod_{\mathfrak{p}} c_{\mathfrak{p}} } { \#E(K)_{\mathrm{tor}}^2 \cdot \left|d_K\right|^{1/2} } \approx \frac{ 1 \cdot 13.024327 \cdot 5.147627 \cdot 4 } { {2^2 \cdot 12.961481} } \approx 5.172585655$
Local data at primes of bad reduction
This elliptic curve is semistable. There are 2 primes $\frak{p}$ of bad reduction. Primes of good reduction for the curve but which divide the discriminant of the model above (if any) are included.
$\mathfrak{p}$ | $N(\mathfrak{p})$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{N}\)) | \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{D}_{\mathrm{min}}\)) | \(\mathrm{ord}_{\mathfrak{p}}(\mathrm{den}(j))\) |
---|---|---|---|---|---|---|---|---|
\((2,a)\) | \(2\) | \(1\) | \(I_0\) | Good | \(1\) | \(0\) | \(0\) | \(0\) |
\((3,a)\) | \(3\) | \(2\) | \(I_{4}\) | Non-split multiplicative | \(1\) | \(1\) | \(4\) | \(4\) |
\((a+7)\) | \(7\) | \(2\) | \(I_{2}\) | Non-split multiplicative | \(1\) | \(1\) | \(2\) | \(2\) |
Galois Representations
The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.
prime | Image of Galois Representation |
---|---|
\(2\) | 2B |
Isogenies and isogeny class
This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\)
2, 4 and 8.
Its isogeny class
21.1-a
consists of curves linked by isogenies of
degrees dividing 8.
Base change
This elliptic curve is a \(\Q\)-curve. It is the base change of the following 2 elliptic curves:
Base field | Curve |
---|---|
\(\Q\) | 441.f6 |
\(\Q\) | 1344.g6 |