Properties

Label 2.2.165.1-15.1-g7
Base field \(\Q(\sqrt{165}) \)
Conductor norm \( 15 \)
CM no
Base change yes
Q-curve yes
Torsion order \( 2 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{165}) \)

Generator \(a\), with minimal polynomial \( x^{2} - x - 41 \); class number \(2\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-41, -1, 1]))
 
gp: K = nfinit(Polrev([-41, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-41, -1, 1]);
 

Weierstrass equation

\({y}^2+a{x}{y}+{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(1048a-7152\right){x}+46944a-324766\)
sage: E = EllipticCurve([K([0,1]),K([-1,1]),K([1,0]),K([-7152,1048]),K([-324766,46944])])
 
gp: E = ellinit([Polrev([0,1]),Polrev([-1,1]),Polrev([1,0]),Polrev([-7152,1048]),Polrev([-324766,46944])], K);
 
magma: E := EllipticCurve([K![0,1],K![-1,1],K![1,0],K![-7152,1048],K![-324766,46944]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a-8)\) = \((3,a+1)\cdot(5,a+2)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 15 \) = \(3\cdot5\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((15)\) = \((3,a+1)^{2}\cdot(5,a+2)^{2}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 225 \) = \(3^{2}\cdot5^{2}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{56667352321}{15} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(\frac{14885}{3136} a - \frac{17573}{448} : \frac{757731}{43904} a - \frac{17199277}{175616} : 1\right)$
Height \(6.6642958275091992471135281312786809825\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(\frac{19}{4} a - \frac{157}{4} : \frac{69}{4} a - \frac{783}{8} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 6.6642958275091992471135281312786809825 \)
Period: \( 2.5479892317162140901436667769415122025 \)
Tamagawa product: \( 4 \)  =  \(2\cdot2\)
Torsion order: \(2\)
Leading coefficient: \( 2.6438686729064033172482605887001577168 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((3,a+1)\) \(3\) \(2\) \(I_{2}\) Non-split multiplicative \(1\) \(1\) \(2\) \(2\)
\((5,a+2)\) \(5\) \(2\) \(I_{2}\) Split multiplicative \(-1\) \(1\) \(2\) \(2\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 4, 8 and 16.
Its isogeny class 15.1-g consists of curves linked by isogenies of degrees dividing 16.

Base change

This elliptic curve is a \(\Q\)-curve. It is the base change of the following 2 elliptic curves:

Base field Curve
\(\Q\) 225.b4
\(\Q\) 1815.d4