Properties

Label 2.2.161.1-16.2-c2
Base field \(\Q(\sqrt{161}) \)
Conductor norm \( 16 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{161}) \)

Generator \(a\), with minimal polynomial \( x^{2} - x - 40 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-40, -1, 1]))
 
gp: K = nfinit(Polrev([-40, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-40, -1, 1]);
 

Weierstrass equation

\({y}^2+a{x}{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(1798602a-12310024\right){x}-3297315484a+22567779616\)
sage: E = EllipticCurve([K([0,1]),K([1,1]),K([0,0]),K([-12310024,1798602]),K([22567779616,-3297315484])])
 
gp: E = ellinit([Polrev([0,1]),Polrev([1,1]),Polrev([0,0]),Polrev([-12310024,1798602]),Polrev([22567779616,-3297315484])], K);
 
magma: E := EllipticCurve([K![0,1],K![1,1],K![0,0],K![-12310024,1798602],K![22567779616,-3297315484]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((26a+152)\) = \((a+6)^{3}\cdot(-a+7)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 16 \) = \(2^{3}\cdot2\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-896a+6144)\) = \((a+6)^{10}\cdot(-a+7)^{7}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 131072 \) = \(2^{10}\cdot2^{7}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{29093329}{128} a + \frac{27262093}{16} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-\frac{905}{4} a + 1542 : -\frac{5263}{8} a + 4525 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 11.882486585432438165393974590829711635 \)
Tamagawa product: \( 14 \)  =  \(2\cdot7\)
Torsion order: \(2\)
Leading coefficient: \( 3.2776489654915379560953866384564726024 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a+6)\) \(2\) \(2\) \(III^{*}\) Additive \(-1\) \(3\) \(10\) \(0\)
\((-a+7)\) \(2\) \(7\) \(I_{7}\) Split multiplicative \(-1\) \(1\) \(7\) \(7\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2.
Its isogeny class 16.2-c consists of curves linked by isogenies of degree 2.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.