Properties

Label 2.2.152.1-26.2-c1
Base field \(\Q(\sqrt{38}) \)
Conductor norm \( 26 \)
CM no
Base change no
Q-curve no
Torsion order \( 1 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{38}) \)

Generator \(a\), with minimal polynomial \( x^{2} - 38 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-38, 0, 1]))
 
gp: K = nfinit(Polrev([-38, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-38, 0, 1]);
 

Weierstrass equation

\({y}^2+\left(a+1\right){x}{y}={x}^{3}-{x}^{2}+\left(106a-607\right){x}+1614a-9889\)
sage: E = EllipticCurve([K([1,1]),K([-1,0]),K([0,0]),K([-607,106]),K([-9889,1614])])
 
gp: E = ellinit([Polrev([1,1]),Polrev([-1,0]),Polrev([0,0]),Polrev([-607,106]),Polrev([-9889,1614])], K);
 
magma: E := EllipticCurve([K![1,1],K![-1,0],K![0,0],K![-607,106],K![-9889,1614]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a-8)\) = \((-a-6)\cdot(a+5)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 26 \) = \(2\cdot13\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-4a-20)\) = \((-a-6)^{4}\cdot(a+5)\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -208 \) = \(-2^{4}\cdot13\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{37576645441}{52} a + \frac{231628356997}{52} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(-3 a + 21 : -8 a + 24 : 1\right)$
Height \(3.0168392483231794462218246527344472572\)
Torsion structure: trivial
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 3.0168392483231794462218246527344472572 \)
Period: \( 2.7284155567048399764156351144551234305 \)
Tamagawa product: \( 2 \)  =  \(2\cdot1\)
Torsion order: \(1\)
Leading coefficient: \( 2.6705510477519183611307587988532770007 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-a-6)\) \(2\) \(2\) \(I_{4}\) Non-split multiplicative \(1\) \(1\) \(4\) \(4\)
\((a+5)\) \(13\) \(1\) \(I_{1}\) Split multiplicative \(-1\) \(1\) \(1\) \(1\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) .

Isogenies and isogeny class

This curve has no rational isogenies. Its isogeny class 26.2-c consists of this curve only.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.