Properties

Label 2.2.152.1-22.1-d1
Base field \(\Q(\sqrt{38}) \)
Conductor norm \( 22 \)
CM no
Base change no
Q-curve no
Torsion order \( 1 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{38}) \)

Generator \(a\), with minimal polynomial \( x^{2} - 38 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-38, 0, 1]))
 
gp: K = nfinit(Polrev([-38, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-38, 0, 1]);
 

Weierstrass equation

\({y}^2+{x}{y}={x}^{3}-{x}^{2}+\left(-470a-2899\right){x}+13901a+85693\)
sage: E = EllipticCurve([K([1,0]),K([-1,0]),K([0,0]),K([-2899,-470]),K([85693,13901])])
 
gp: E = ellinit([Polrev([1,0]),Polrev([-1,0]),Polrev([0,0]),Polrev([-2899,-470]),Polrev([85693,13901])], K);
 
magma: E := EllipticCurve([K![1,0],K![-1,0],K![0,0],K![-2899,-470],K![85693,13901]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-a-4)\) = \((-a-6)\cdot(-a+7)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 22 \) = \(2\cdot11\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-101a+256)\) = \((-a-6)\cdot(-a+7)^{5}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -322102 \) = \(-2\cdot11^{5}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{689814863492301}{322102} a + \frac{2125836434628648}{161051} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(1 : -33 a - 204 : 1\right)$
Height \(0.17560611557039214654409414153841072704\)
Torsion structure: trivial
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.17560611557039214654409414153841072704 \)
Period: \( 19.561679639352599553438944299144801117 \)
Tamagawa product: \( 5 \)  =  \(1\cdot5\)
Torsion order: \(1\)
Leading coefficient: \( 2.7862750407781360614572142726150880201 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-a-6)\) \(2\) \(1\) \(I_{1}\) Non-split multiplicative \(1\) \(1\) \(1\) \(1\)
\((-a+7)\) \(11\) \(5\) \(I_{5}\) Split multiplicative \(-1\) \(1\) \(5\) \(5\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(5\) 5B.4.2

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 5.
Its isogeny class 22.1-d consists of curves linked by isogenies of degree 5.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.