Properties

Label 2.2.140.1-20.1-a1
Base field \(\Q(\sqrt{35}) \)
Conductor norm \( 20 \)
CM no
Base change yes
Q-curve yes
Torsion order \( 2 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{35}) \)

Generator \(a\), with minimal polynomial \( x^{2} - 35 \); class number \(2\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-35, 0, 1]))
 
gp: K = nfinit(Polrev([-35, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-35, 0, 1]);
 

Weierstrass equation

\({y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}-a{x}^{2}+\left(105a-633\right){x}+2716a-16072\)
sage: E = EllipticCurve([K([1,1]),K([0,-1]),K([1,1]),K([-633,105]),K([-16072,2716])])
 
gp: E = ellinit([Polrev([1,1]),Polrev([0,-1]),Polrev([1,1]),Polrev([-633,105]),Polrev([-16072,2716])], K);
 
magma: E := EllipticCurve([K![1,1],K![0,-1],K![1,1],K![-633,105],K![-16072,2716]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((10,2a)\) = \((2,a+1)^{2}\cdot(5,a)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 20 \) = \(2^{2}\cdot5\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-62500)\) = \((2,a+1)^{4}\cdot(5,a)^{12}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 3906250000 \) = \(2^{4}\cdot5^{12}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{20720464}{15625} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-\frac{7}{2} a + 19 : -\frac{33}{4} a + \frac{205}{4} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 1.7726877650036809393831215444328774018 \)
Tamagawa product: \( 36 \)  =  \(3\cdot( 2^{2} \cdot 3 )\)
Torsion order: \(2\)
Leading coefficient: \( 1.3483751462082411256188157618613558923 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((2,a+1)\) \(2\) \(3\) \(IV\) Additive \(-1\) \(2\) \(4\) \(0\)
\((5,a)\) \(5\) \(12\) \(I_{12}\) Split multiplicative \(-1\) \(1\) \(12\) \(12\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(3\) 3B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 3 and 6.
Its isogeny class 20.1-a consists of curves linked by isogenies of degrees dividing 6.

Base change

This elliptic curve is a \(\Q\)-curve. It is the base change of the following 2 elliptic curves:

Base field Curve
\(\Q\) 100.a2
\(\Q\) 3920.h2