Base field \(\Q(\sqrt{13}) \)
Generator \(a\), with minimal polynomial \( x^{2} - x - 3 \); class number \(1\).
Elliptic curves in class 81.4-a over \(\Q(\sqrt{13}) \)
Isogeny class 81.4-a contains 2 curves linked by isogenies of degree 3.
Rank
Rank: \( 0 \)Isogeny matrix
\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)